【題目】某同學用“五點法”畫函數
在某一周期內的圖象時,列表并填入了部分數據,如下表:
|
|
|
|
|
|
|
| ① |
| ||
|
|
|
|
|
|
(1)請將上面表格中①的數據填寫在答題卡相應位置上,并直接寫出函數
的解析式;
(2)若將函數
的圖象上所有點的橫坐標變為原來的
倍,縱坐標不變,得到函數
的圖象,求當
時,函數
的單調遞增區間;
(3)若將函數
圖象上的所有點向右平移
個單位長度,得到
的圖象. 若
圖象的一個對稱中心為
,求
的最小值.
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足
.
(1)若
,求證:存在
(a,b,c為常數),使數列
是等比數列,并求出數列{an}的通項公式;
(2)若an 是一個等差數列{bn}的前n項和,求首項a1的值與數列{bn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某親子游戲結束時有一項抽獎活動,抽獎規則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數字,小球除數字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數字將小球放回.抽獎活動的獎勵規則是:①若取出的兩個小球上數字之積大于4,則獎勵飛機玩具一個;②若取出的兩個小球上數字之積在區間上
,則獎勵汽車玩具一個;③若取出的兩個小球上數字之積小于1,則獎勵飲料一瓶.
(1)求每對親子獲得飛機玩具的概率;
(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
,且
).
(Ⅰ)求函數
的單調區間;
(Ⅱ)求函數
在
上的最大值.
【答案】(Ⅰ)
的單調增區間為
,單調減區間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用
的二階導數來研究求得函數
的單調區間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數和對
分類討論求得函數在
不同取值時的最大值.
【試題解析】
(Ⅰ)
,
設
,則
.
∵
,
,∴
在
上單調遞增,
從而得
在
上單調遞增,又∵
,
∴當
時,
,當
時,
,
因此,
的單調增區間為
,單調減區間為
.
(Ⅱ)由(Ⅰ)得
在
上單調遞減,在
上單調遞增,
由此可知
.
∵
,
,
∴
.
設
,
則
.
∵當
時,
,∴
在
上單調遞增.
又∵
,∴當
時,
;當
時,
.
①當
時,
,即
,這時,
;
②當
時,
,即
,這時,
.
綜上,
在
上的最大值為:當
時,
;
當
時,
.
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與
軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓
的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線
與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數據
(成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統抽樣方法從中抽取6人,求其中成績在區間
上的選手人數;
![]()
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統計.為了便于區別性別,輸入時,男選手的成績數據用正數,女選手的成績數據用其相反數(負數),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數值
和
的統計意義.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數
的監測數據,結果統計如下:
![]()
記某企業每天由空氣污染造成的經濟損失
(單位:元),空氣質量指數
為
.當
時,企業沒有造成經濟損失;當
對企業造成經濟損失成直線模型(當
時造成的經濟損失為
,當
時,造成的經濟損失
;當
時造成的經濟損失為2000元;
(1)試寫出
的表達式:
(2)在本年內隨機抽取一天,試估計該天經濟損失超過350元的概率;
(3)若本次抽取的樣本數據有30天是在供暖季,其中有12天為重度污染,完成下面
列聯表,并判斷能否有
的把握認為該市本年空氣重度污染與供暖有關?
![]()
![]()
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,直線
的參數方程為
,(
為參數).以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線
的極坐標方程與曲線
的直角坐標方程;
(2)已知與直線
平行的直線
過點
,且與曲線
交于
兩點,試求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com