題目列表(包括答案和解析)
已知函數
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當
時,取
,有
,故
時不合題意.當
時,令
,即![]()
![]()
令
,得![]()
①當
時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當
時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當n=1時,不等式左邊=
=右邊,所以不等式成立.
當
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
| 1 |
| x |
| 2 |
| y |
| xy |
| 1 | ||
|
| 1 |
| x |
| 2 |
| y |
|
| 1 |
| x |
| 2 |
| y |
| 2 |
| 2 |
| 1 |
| x |
| 2 |
| y |
| xy |
| 1 | ||
|
| 1 |
| x |
| 2 |
| y |
|
| 1 |
| x |
| 2 |
| y |
| 2 |
| 2 |
函數
在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式![]()
(2)函數
的圖象經過怎樣的變換可得到
的圖象?
(3)若函數
滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用![]()
又因![]()
又
函數![]()
第二問中,利用
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,
可得結論。
解:(1)![]()
又因![]()
又
函數![]()
(2)
的圖象向右平移
個單位得
的圖象
再由
圖象上所有點的橫坐標變為原來的
.縱坐標不變,得到
的圖象,
(3)
的周期為![]()
在
內恰有3個周期,
并且方程
在
內有6個實根且![]()
同理,![]()
故所有實數之和為![]()
,
,
為常數,離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:![]()
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數)上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內,求實數
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
第二問中,
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:![]()
借助于根與系數的關系得到即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
解:(Ⅰ)由已知易得雙曲線焦距為
,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程![]()
(Ⅱ)設
為
,
,
,
故直線
的方程為
,即
,
所以
,同理可得:
,
即
,
是方程
的兩個不同的根,所以![]()
由已知易得
,即![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com