題目列表(包括答案和解析)
若圓C過點M(0,1)且與直線
相切,設圓心C的軌跡為曲線E,A、B(A在y軸的右側)為曲線E上的兩點,點
,且滿足![]()
(Ⅰ)求曲線E的方程;
(Ⅱ)若t=6,直線AB的斜率為
,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(Ⅲ)分別過A、B作曲線E的切線,兩條切線交于點
,若點
恰好在直線
上,求證:t與
均為定值.
若圓C過點M(0,1)且與直線
相切,設圓心C的軌跡為曲線E,A、B為曲線E
上的兩點,點![]()
(I)求曲線E的方程; (II)若t=6,直線AB的斜率為
,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線
上,求證:t與
均為定值。
| AP |
| PB |
| 1 |
| 2 |
| QA |
| QB |
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結論直線
與曲線
總有兩個公共點.
然后設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點.(也可根據點M在橢圓
的內部得到此結論)
………………6分
設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點
,使得
總能被
軸平分
| AP |
| PB |
| 1 |
| 2 |
| QA |
| QB |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com