題目列表(包括答案和解析)
(2010天津理數(shù))(20)(本小題滿分12分)
已知橢圓
的離心率
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4。
(1) 求橢圓的方程;
(2) 設(shè)直線
與橢圓相交于不同的兩點(diǎn)
,已知點(diǎn)
的坐標(biāo)為(
),點(diǎn)
在線段
的垂直平分線上,且
,求
的值
(2010四川理數(shù))(20)(本小題滿分12分)
已知定點(diǎn)A(-1,0),F(2,0),定直線l:x=
,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交E于B、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N
(Ⅰ)求E的方程;
(Ⅱ)試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由.【來源:全,品…中&高*考+網(wǎng)】
本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識,考察平面機(jī)襲擊和的思想方法及推理運(yùn)算能力.
(2010重慶理數(shù))(20)(本小題滿分12分,(I)小問5分,(II)小問7分)
已知以原點(diǎn)O為中心,
為右焦點(diǎn)的雙曲線C的離心率
。
(I) 求雙曲線C的標(biāo)準(zhǔn)方程及其漸近線方程;
如題(20)圖,已知過點(diǎn)
的直線
與過點(diǎn)
(其中
)的直線
的交點(diǎn)E在雙曲線C上,直線MN與兩條漸近線分別交與G、H兩點(diǎn),求
的面積。、】
(本小題滿分12分)制定投資計(jì)劃時(shí),不僅要考慮可能獲得的贏利,而且要考慮可能出現(xiàn)的虧損。某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大贏利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元,問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的贏利最大?
(本小題滿分12分)制定投資計(jì)劃時(shí),不僅要考慮可能獲得的贏利,而且要考慮
可能出現(xiàn)的虧損。某投資人打算投資甲、乙兩個(gè)項(xiàng)目
,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大
贏利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額
不超過10萬元,要求確保可能的資金虧損不超過1.8萬元,問投
資人對甲、乙兩個(gè)項(xiàng)目各
投資多少萬元,才能使可能的贏利最大?
一、選擇題(每小題5分,共60分)
BDACC ACDDB AA
二、填空題(每小題4分,共16分)
(13)
; (14)
; (15)
; (16)②③。
三、解答題(共74分)
(17)解:(I)由于弦定理
,
有學(xué).files/image268.gif)
代入
得
。
…………………………………4分
即
。
……………………………………6分
學(xué).files/image278.gif)
……………………………………7分
…………………………………8分
(Ⅱ)
,
………………………………10分
由
,得
。
………………………………11分
所以,當(dāng)
時(shí),
取得最小值為0, ………………………………12分
(18)解:(I)由已知得學(xué).files/image294.gif)
故學(xué).files/image296.gif)
即學(xué).files/image298.gif)
故數(shù)列
為等比數(shù)列,且學(xué).files/image301.gif)
又當(dāng)
時(shí),學(xué).files/image305.gif)
………………………………6分
而
亦適合上式
…………………………………8分
(Ⅱ)學(xué).files/image313.gif)
所以學(xué).files/image315.gif)
學(xué).files/image317.gif)
………………………………12分
(19)解:(I)由該四棱錐的三視圖可知,該四棱錐
的底面的邊長為1的正方形,側(cè)棱
,學(xué).files/image324.gif)
……………………………4分
(Ⅱ)連結(jié)
交
于
,則
為
的中點(diǎn),
為
的中點(diǎn),
,
又
平面
內(nèi),
平面
………………8分
(Ⅲ)不論點(diǎn)
在何位置,都有
………………9分
證明:連結(jié)
,
是正方形,學(xué).files/image352.gif)
學(xué).files/image354.gif)
學(xué).files/image356.gif)
學(xué).files/image208.gif)
又
,
學(xué).files/image361.gif)
…………12分
(20分)解:
(I)利用樹形圖我們可以列出連續(xù)抽取2張卡片的所有可能結(jié)果(如下圖所示)。
學(xué).files/image365.jpg)
由上圖可以看出,實(shí)驗(yàn)的所有可能結(jié)果數(shù)為20.因?yàn)槊看味茧S機(jī)抽取,因次
這20種結(jié)果出現(xiàn)的可能性是相同的,實(shí)驗(yàn)屬于古典概型。 ……………2分用
表示事“連續(xù)抽取2人都是女生”,則
與
互斥,并且
表示事
件“連續(xù)抽取2張卡片,取出的2人不全是男生”,由列出的所有可能結(jié)果可
以看出,
的結(jié)果有12種,
的結(jié)果有2種,由互斥事件的概率加法公式,
可得
,
即連續(xù)抽取2張卡片,取出的2人不全是男生的概率為0.7……………6分
(Ⅱ)有放回地連續(xù)抽取2張卡片,需注意同一張卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我們用一個(gè)有序?qū)崝?shù)對表示抽取的結(jié)果,例如“第一次取出2號,第二次取出4號”就用(2,4)來表示,所有的可能結(jié)果可以用下表列出。
第二次抽取
第一次抽取
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
試驗(yàn)的所有可能結(jié)果數(shù)為25,并且這25種結(jié)果出現(xiàn)的可能性是相同的,試驗(yàn)屬于古典型。 …………………………8分
用
表示事件“獨(dú)唱和朗誦由同一個(gè)人表演”,由上表可以看出,
的結(jié)果共
有5種,因此獨(dú)唱和朗誦由同一個(gè)人表演的概率
……………………………12分
(21)解:
(I)學(xué).files/image384.gif)
依題意有
………………………2分
即
解得
…………………………4分
學(xué).files/image392.gif)
由
,得
的單調(diào)遞減區(qū)間是
………………………6分
(Ⅱ)由
得
………………………8分
不等式組確定的平面區(qū)域如圖陰影部分所示:
由
得
………………………8分
不等式組確定的平面區(qū)域如圖陰影部分所示:
由
得學(xué).files/image413.gif)
點(diǎn)的坐標(biāo)為(0,-1). ………………10分
設(shè)
則
表示平面區(qū)域內(nèi)的點(diǎn)(
)與點(diǎn)
連線斜率。
由圖可知
或
,
即
……………12分
(22)解:
(I)設(shè)橢圓方程為學(xué).files/image433.gif)
則根據(jù)題意,雙曲線的方程為
且滿足
解方程組得
……………………4分
橢圓的方程為
,雙曲線的方程
………………6分
(Ⅱ)由(I)得學(xué).files/image447.gif)
設(shè)
則由
得
為
的中點(diǎn),所以
點(diǎn)坐標(biāo)為
,
將
坐標(biāo)代入橢圓和雙曲線方程,得
學(xué).files/image459.gif)
消去
,得學(xué).files/image463.gif)
解之得
或
(舍)
所以
,由此可得學(xué).files/image471.gif)
所以
…………………………10分
當(dāng)
為
時(shí),直線
的方程是
即學(xué).files/image481.gif)
代入
,得學(xué).files/image484.gif)
所以
或-5(舍)
……………………………12分
所以學(xué).files/image488.gif)
軸。
所以
……………………14分
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com