題目列表(包括答案和解析)
在復平面內,
是原點,向量
對應的復數是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量
對應的復數
和
;
(Ⅱ)復數
,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=![]()
第二問中,由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,
為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴
=(0,-2)
∴
=-2i 3分
∵
(2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,
=(2,1)
∴![]()
同理
,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,
為半徑的圓上
在棱長為
的正方體
中,
是線段
的中點,
.
(1) 求證:
^
;
(2) 求證:
//平面
;
(3) 求三棱錐
的表面積.
![]()
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用
,得到結論,第二問中,先判定
為平行四邊形,然后
,可知結論成立。
第三問中,
是邊長為
的正三角形,其面積為
,
因為
平面
,所以
,
所以
是直角三角形,其面積為
,
同理
的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據正方體的性質
,
因為
,
所以
,又
,所以
,
,
所以
^
.
………………4分
(2)證明:連接
,因為
,
所以
為平行四邊形,因此
,
由于
是線段
的中點,所以
, …………6分
因為![]()
面
,![]()
平面
,所以
∥平面
. ……………8分
(3)
是邊長為
的正三角形,其面積為
,
因為
平面
,所以
,
所以
是直角三角形,其面積為
,
同理
的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
![]()
設點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當
時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當
時,若
,
求證:
;
(3) 當
時,某同學對(2)的逆命題,即:
“若
,則
.”
開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數
,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設
,分別過
作
拋物線
的準線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達式與點
的縱坐標無關,所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質上只需構造滿足條件且
的一組
個不同的點,均為反例.)
③ 補充條件1:“點
的縱坐標
(
)滿足
”,即:
“當
時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設
,
分別過
作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補充條件2:“點
與點![]()
為偶數,
關于
軸對稱”,即:
“當
時,若
,且點
與點![]()
為偶數,
關于
軸對稱,則
”.此命題為真.(證略)
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點,且
.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
![]()
【解析】本試題主要是考查了立體幾何匯總線面的位置關系的運用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結合線面垂直的判定定理和性質定理,可以得證。
解:(Ⅰ)設AB1 的中點為P,連結NP、MP ………………1分
![]()
![]()
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設:AC=2a,則![]()
…………………………8分
同理,
…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
![]()
………………………………10分
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com