【題目】如圖,平面直角坐標系中,點A在第四象限,點B在x軸正半軸上,在△OAB中,∠OAB=90°,AB=AO=6
,點P為線段OA上一動點(點P不與點A和點O重合),過點P作OA的垂線交x軸于點C,以點C為正方形的一個頂點作正方形CDEF,使得點D在線段CB上,點E在線段AB上.
(1)①求直線AB的函數表達式.
②直接寫出直線AO的函數表達式 ;
(2)連接PF,在Rt△CPF中,∠CFP=90°時,請直接寫出點P的坐標為 ;
(3)在(2)的前提下,直線DP交y軸于點H,交CF于點K,在直線OA上存在點Q.使得△OHQ的面積與△PKE的面積相等,請直接寫出點Q的坐標 .
![]()
【答案】(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)
【解析】
(1)①利用等腰直角三角形的性質可以得到點A和點B的坐標,從而根據待定系數法求得直線AB的函數表達式;
②根據點A和點O的坐標可以求得直線AO的表達式;
(2)根據題意畫出圖形,首先得出點P、F、E三點共線,然后根據正方形的性質得出PE是△OAB的中位線,即點P為OA的中點,則點P的坐標可求;
(3)根據題意畫出圖形,然后求出直線PD 的解析式,得到點H的坐標,根據(2)中的條件和題意,可以求得△PKE的面積,再根據△OHQ的面積與△PKE的面積相等,可以得到點Q橫坐標的絕對值,由點Q在直線AO上即可求得點Q的坐標.
解:(1)①∵在△OAB中,∠OAB=90°,AB=AO=
,
∴△AOB是等腰直角三角形,OB=
,
∴∠AOB=∠ABO=45°,
∴點A的坐標為(6,﹣6),點B的坐標為(12,0),
設直線AB的函數表達式為y=kx+b,
,得
,
即直線AB的函數表達式是y=x﹣12;
②設直線AO的函數表達式為y=ax,
6a=﹣6,得a=﹣1,
即直線AO的函數表達式為y=﹣x,
(2)點P的坐標為(3,﹣3),
理由:如圖:
![]()
∵在Rt△CPF中,∠CFP=90°,∠CFE=90°,
∴點P、F、E三點共線,
∴PE∥OB,
∵四邊形CDEF是正方形,∠OPC=90°,∠COA=45°,
∴CF=PF=AF=EF,
∴PE是△OAB的中位線,
∴點P為OA的中點,
∴點P的坐標為(3,﹣3),
故答案為:(3,﹣3);
(3)如圖,
![]()
在△PFK和△DCK中,
∴△PFK≌△DCK(AAS),
∴CK=FK,
則由(2)可知,PE=6,FK=1.5,BD=3
∴點D(9,0)
∴△PKE的面積是
=4.5,
∵△OHQ的面積與△PKE的面積相等,
∴△OHQ的面積是4.5,
設直線PD的函數解析式為y=mx+n
∵點P(3,﹣3),點D(9,0)在直線PD上,
∴
,得
,
∴直線PD的函數解析式為y=
,
當x=0時,y=-
,
即點H的坐標為
,
∴OH=
設點Q的橫坐標為q,
則
,
解得,q=±2,
∵點Q在直線OA上,直線OA的表達式為y=﹣x,
∴當x=2時,y=﹣2,當x=﹣2時,x=2,
即點Q的坐標為(2,﹣2)或(﹣2,2),
科目:初中數學 來源: 題型:
【題目】在
中,
,
,點
是線段
上一動點(
不與
,
重合).
(1)如圖1,當點
為
的中點,過點
作
交
的延長線于點
,求證:
;
(2)連接
,作
,
交
于點
.若
時,如圖2.
①
______;
②求證:
為等腰三角形;
(3)連接CD,∠CDE=30°,在點
的運動過程中,
的形狀可以是等腰三角形嗎?若可以,請求出
的度數;若不可以,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數是( )
![]()
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】跳遠運動員李陽對訓練效果進行測試.6次跳遠的成績如下:7.5,7.7,7.6,7.7,7.9,7.8(單位:m)這六次成績的平均數為7.7m,方差為
.如果李陽再跳一次,成績為7.7m.則李陽這7次跳遠成績的方差_____(填“變大”、“不變”或“變小”).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F為BC中點,連接AE.
(1)直接寫出∠BAE的度數為 ;
(2)判斷AF與CE的位置關系,并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為支援雅安災區,某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.
(1)若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?
(2)若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的文字,解答問題:
是一個無理數,而無理數是無限不循環小數,因此
的小數部分無法全部寫出來,但是我們可以想辦法把它表示出來.因為
,所以
的整數部分為
,將
減去其整數部分后,得到的差就是小數部分,于是
的小數部分為
.
(1)求出
的整數部分和小數部分:
(2)求出
的整數部分和小數部分;
(3)如果
的整數部分是
,小數部分是
,求出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
,已知直線
與
軸,
軸分別交于
,
兩點,以
為直角頂點在第二象限作等腰
.
![]()
(1)求點
的坐標,并求出直線
的關系式;
(2)如圖
,直線
交
軸于
,在直線
上取一點
,連接
,若
,求證:
.
(3)如圖
,在(1)的條件下,直線
交
軸于點
,
是線段
上一點,在
軸上是否存在一點
,使
面積等于
面積的一半?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在
中,
,
,
于點
.
(1)如圖1,點
,
分別在
,
上,且
,當
,
時,求線段
的長;
(2)如圖2,點
,
分別在
,
上,且
,求證:
;
(3)如圖3,點
在
的延長線上,點
在
上,且
,求證:
.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com