【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
![]()
請(qǐng)補(bǔ)全證明過(guò)程,并在括號(hào)里寫(xiě)上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
【答案】AC,在同一個(gè)三角形中,等角對(duì)等邊,AB,AE,HL,全等三角形對(duì)應(yīng)角相等
【解析】
已知∠ABC=∠ACB,根據(jù)等腰三角形的判定方法可得AB=AC,在Rt△ABE和Rt△ACD中,利用HL證明Rt△ABE≌Rt△ACD,由全等三角形對(duì)應(yīng)角相等即可得∠BAE=∠CAD.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= AC (在同一個(gè)三角形中,等角對(duì)等邊)
在Rt△ABE和Rt△ACD中,
∵AB =AC, AE =AD,
∴Rt△ABE≌Rt△ACD(HL),
∴∠BAE=∠CAD(全等三角形對(duì)應(yīng)角相等).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過(guò)點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線(xiàn)CD上的一點(diǎn),且△OCP與△OBC相似,求過(guò)點(diǎn)P的雙曲線(xiàn)解析式.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P從點(diǎn)O出發(fā),按逆時(shí)針?lè)较蜓刂荛L(zhǎng)為l的圖形運(yùn)動(dòng)一周,O,P兩點(diǎn)間的距離y與點(diǎn)P走過(guò)的路程x的函數(shù)關(guān)系如圖,那么點(diǎn)P所走的圖形是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:
(1)
=3.
(2)(y+2)2=(3y﹣1)2.
(3)(x﹣2)(x+5)=8.
(4)(2x+1)2=﹣6x﹣3.
(5)2x2﹣3x﹣2=0.
(6)4x2﹣12x﹣1=0(配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的半徑為5,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)D在直線(xiàn)AB上. ![]()
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線(xiàn);
(2)如圖(2),CD與⊙O交于另一點(diǎn)E.BD:DE:EC=2:3:5,求圓心O到直線(xiàn)CD的距離;
(3)若圖(2)中的點(diǎn)D是直線(xiàn)AB上的動(dòng)點(diǎn),點(diǎn)D在運(yùn)動(dòng)過(guò)程中,會(huì)出現(xiàn)C,D,E在三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)連線(xiàn)的中點(diǎn)的情形,問(wèn)這樣的情況出現(xiàn)幾次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC的中點(diǎn). ![]()
(1)作圖: ①過(guò)B作AC的平行線(xiàn)BH;
②過(guò)D作BH的垂線(xiàn),分別交AC,BH,AB的延長(zhǎng)線(xiàn)于E,F(xiàn),G.
(2)在圖中找出一對(duì)全等的三角形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由甲、乙兩個(gè)工程隊(duì)承包某校校園的綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工作所需的時(shí)間比是3∶2,兩隊(duì)共同施工6天可以完成.
(1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)此項(xiàng)工程由甲、乙兩隊(duì)共同施工6天完成任務(wù)后,學(xué)校付給他們4000元報(bào)酬,若按各自完成的工程量分配這筆錢(qián),問(wèn)甲、乙兩隊(duì)各應(yīng)得到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點(diǎn)P,使得∠BPC與∠A互補(bǔ),其作法分別如下:
(甲)以A為圓心,AC長(zhǎng)為半徑畫(huà)弧交AB于P點(diǎn),則P即為所求;
(乙)作過(guò)B點(diǎn)且與AB垂直的直線(xiàn),作過(guò)C點(diǎn)且與AC垂直的直線(xiàn),交于P點(diǎn),則P即為所求.
![]()
對(duì)于甲、乙兩人的作法,下列敘述何者正確?( )
A. 兩人皆正確
B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤
D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com