【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
![]()
【答案】 140° 40°
【解析】∵∠A=100°,
∵∠ABC+∠ACB=180°100°=80°,
∵BI、CI分別平分∠ABC,∠ACB,
∴∠IBC=
∠ABC,∠ICB=
∠ACB,
∴∠IBC+∠ICB=
∠ABC+
∠ACB=
(∠ABC+∠ACB)=
×80°=40°,
∴∠BIC=180°(∠IBC+∠ICB)=180°40°=140°,
∵∠ABC+∠ACB=80°,
∴∠DBC+∠ECB=180°∠ABC+180°∠ACB=360°(∠ABC+∠ACB)=360°80°=280°,
∵BM、CM分別平分∠ABC,∠ACB的外角平分線,
∴∠1=
∠DBC,∠2=
∠ECB,
∴∠1+∠2=
×280°=140°,
∴∠M=180°∠1∠2=40°.
故答案為:40°.
科目:初中數學 來源: 題型:
【題目】某校為了了解學生家長對孩子用手機的態度問題,隨機抽取了100名家長進行問卷調查,每位學生家長只有一份問卷,且每份問卷僅表明一種態度(這100名家長的問卷真實有效),將這100份問卷進行回收整理后,繪制了如下兩幅不完整的統計圖.
![]()
(1)“從來不管”的問卷有 份,在扇形圖中“嚴加干涉”的問卷對應的圓心角為 .
(2)請把條形圖補充完整.
(3)若該校共有學生2000名,請估計該校對手機問題“嚴加干涉”的家長有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,分別在三角形、四邊形、五邊形的廣場各角修建半徑為R的扇形草坪(圖中陰影部分).
![]()
(1)圖①中草坪的面積為__________;
(2)圖②中草坪的面積為__________;
(3)圖③中草坪的面積為__________;
(4)如果多邊形的邊數為n,其余條件不變,那么,你認為草坪的面積為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為
.
(1)求袋子中白球的個數;(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】概念學習
規定:求若干個相同的有理數(均不等于0)的除法運算叫做除方,如2÷2÷2,
(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把
(a≠0)記作a,讀作“a的圈n次方”.
初步探究
(1)直接寫出計算結果:2③=________,
⑤=________;
(2)關于除方,下列說法錯誤的是________
A.任何非零數的圈2次方都等于1; B.對于任何正整數n,1
=1; C.3④=4③ D.負數的圈奇數次方結果是負數,負數的圈偶數次方結果是正數.
深入思考
我們知道,有理數的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數的除方運算如何轉化為乘方運算呢?
![]()
(1)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式.(﹣3)④=________;5⑥=________;
⑩=________.
(2)想一想:將一個非零有理數a的圈n次方寫成冪的形式等于________;
(3)算一算:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com