【題目】圖2、圖3是某公共汽車(chē)雙開(kāi)門(mén)的俯視示意圖,ME,EF,FN是門(mén)軸的滑動(dòng)軌道,
,兩門(mén)AB,CD的門(mén)軸A,B,C,D都在滑動(dòng)軌道上,兩門(mén)關(guān)閉時(shí)圖2,A,D分別在E,F處,門(mén)縫忽略不計(jì)(即B,C重合);兩門(mén)同時(shí)開(kāi)啟,A,D分別沿
,
的方向勻速滑動(dòng),帶動(dòng)B,C滑動(dòng);B到達(dá)E時(shí),C恰好到達(dá)F,此時(shí)兩門(mén)完全開(kāi)啟.已知
.(1)如圖3,當(dāng)
時(shí),
______cm.(2)在(1)的基礎(chǔ)上,當(dāng)A向M方向繼續(xù)滑動(dòng)15cm時(shí),四邊形ABCD的面積為______
.
![]()
【答案】(1)
; (2)2256.
【解析】
(1)由已知可得B、C兩點(diǎn)的路程之比為5:4,再結(jié)合B運(yùn)動(dòng)的路程即可求出C運(yùn)動(dòng)的路程,相加即可求出BC的長(zhǎng);(2)當(dāng)A向M方向繼續(xù)滑動(dòng)15cm時(shí),AA'=15cm,由勾股定理和題目條件求出△A'EB'、△D'FC'和梯形A'EFD'邊長(zhǎng),即可利用割補(bǔ)法求出四邊形四邊形ABCD的面積.
∵A、D分別在E、F處,門(mén)縫忽略不計(jì)(即B、C重合)且AB=50cm,CD=40cm.
∴EF=50+40=90cm
∵B到達(dá)E時(shí),C恰好到達(dá)F,此時(shí)兩門(mén)完全開(kāi)啟,
∴B、C兩點(diǎn)的路程之比為5:4
(1)當(dāng)∠ABE=30°時(shí),在Rt△ABE中,
,
∴B運(yùn)動(dòng)的路程為(50﹣25
)cm
∵B、C兩點(diǎn)的路程之比為5:4
∴此時(shí)點(diǎn)C運(yùn)動(dòng)的路程為
cm
∴BC=(50﹣25
)+(40﹣20
)=(90﹣45
)cm
故答案為:90﹣45
;
(2)當(dāng)A向M方向繼續(xù)滑動(dòng)15cm時(shí),設(shè)此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A'處,點(diǎn)B、C、D分別運(yùn)動(dòng)到了點(diǎn)B'、C'、D'處,連接A'D',如圖:
![]()
則此時(shí)AA'=15cm
∴A'E=15+25=40cm
由勾股定理得:EB'=30cm,
∴B運(yùn)動(dòng)的路程為50﹣30=20cm
∴C運(yùn)動(dòng)的路程為16cm
∴C'F=40﹣16=24cm
由勾股定理得:D'F=32cm,
∴四邊形A'B'C'D'的面積=梯形A'EFD'的面積﹣△A'EB'的面積﹣△D'FC'的面積=
×24×32=2556cm2.
∴四邊形ABCD的面積為2556cm2.
故答案為:2556.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為4,
①用尺規(guī)作出點(diǎn)A到CD所在直線的距離;
②求出該距離.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)∠BAE為多少度時(shí),四邊形AECF是菱形?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹(shù),數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽(yáng)光與地面成60°角時(shí),第二次是陽(yáng)光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹(shù)高_____________米(結(jié)果保留根號(hào)).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正n邊形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點(diǎn)O,連接AO,我們稱(chēng)AO為“疊弦”;再將“疊弦”AO所在的直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點(diǎn)P,連接PO,我們稱(chēng)∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
![]()
(探究證明)
(1)請(qǐng)?jiān)趫D1和圖2中選擇其中一個(gè)證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
(歸納猜想)
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;
(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰
中,
.點(diǎn)D,E分別在邊AB,BC上,將線段ED繞點(diǎn)E按逆時(shí)針?lè)较蛐D(zhuǎn)90得到EF.
![]()
(1)如圖1,若
,點(diǎn)E與點(diǎn)C重合,AF與DC相交于點(diǎn)O.求證:
.
(2)已知點(diǎn)G為AF的中點(diǎn).
①如圖2,若
,求DG的長(zhǎng).
②若
,是否存在點(diǎn)E,使得
是直角三角形?若存在,求CE的長(zhǎng);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理
、
兩種型號(hào)的凈水器,每臺(tái)
型凈水器比每臺(tái)
型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)
型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)
型凈水器的數(shù)量相等.
(1)求每臺(tái)
型、
型凈水器的進(jìn)價(jià)各是多少元;
(2)槐蔭公司計(jì)劃購(gòu)進(jìn)
、
兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷(xiāo),其中
型凈水器為
臺(tái),購(gòu)買(mǎi)資金不超過(guò)9.8萬(wàn)元.試銷(xiāo)時(shí)
型凈水器每臺(tái)售價(jià)2500元,
型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷(xiāo)售
型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)
元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為
,求
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).如圖,5×5正方形方格紙圖中,點(diǎn)A,B都在格點(diǎn)處.
(1)請(qǐng)?jiān)趫D中作等腰△ABC,使其底邊AC=2
,且點(diǎn)C為格點(diǎn);
(2)在(1)的條件下,作出平行四邊形ABDC,且D為格點(diǎn),并直接寫(xiě)出平行四邊形ABDC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年5月的第二個(gè)星期日即為母親節(jié),“父母恩深重,恩憐無(wú)歇時(shí)”,許多市民喜歡在母親節(jié)為母親送鮮花,感恩母親,祝福母親. 節(jié)日前夕,某花店采購(gòu)了一批鮮花禮盒,成本價(jià)為30元每件,分析上一年母親節(jié)的鮮花禮盒銷(xiāo)售情況,得到了如下數(shù)據(jù),同時(shí)發(fā)現(xiàn)每天的銷(xiāo)售量
(件)是銷(xiāo)售單價(jià)
(元/件)的一次函數(shù).
銷(xiāo)售單價(jià) | … | 30 | 40 | 50 | 60 | … |
每天銷(xiāo)售量 | … | 350 | 300 | 250 | 200 | … |
(1)求出
與
的函數(shù)關(guān)系;
(2)物價(jià)局要求,銷(xiāo)售該鮮花禮盒獲得的利潤(rùn)不得高于100﹪:
①當(dāng)銷(xiāo)售單價(jià)
取何值時(shí),該花店銷(xiāo)售鮮花禮盒每天獲得的利潤(rùn)為5000元?(利潤(rùn)=銷(xiāo)售總價(jià)-成本價(jià));
②試確定銷(xiāo)售單價(jià)
取何值時(shí),花店銷(xiāo)該鮮花禮盒每天獲得的利潤(rùn)
(元)最大?并求出花店銷(xiāo)該鮮花禮盒每天獲得的最大利潤(rùn).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com