【題目】如圖,在平面直角坐標系中,一動點從原點
出發,按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到
(0,1),
(1,1),
(1,0),
(2,0),…那么點
的坐標為__________.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:
①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;
②分別以D,E為圓心,以大于
DE的同樣長為半徑作弧,兩弧交于點F;
③作射線BF交AC于G.
如果BG=CG,∠A=60°,那么∠ACB的度數為____________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級全體學生在5名教師的帶領下去公園秋游,公園的門票為每人30元.現有兩種優惠方案,甲方案:帶隊老師免費,學生按8折收費;乙方案:師生都按7.5折收費.
(1)若有n名學生,用含n的代數式表示兩種優惠方案各需多少元?
(2)當n=70時,采用哪種方案更優惠?
(3)當n=100時,采用哪種方案更優惠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】同學們都知道:|5﹣(﹣2)|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數在數軸上所對應的兩點之間的距離.請你借助數軸進行以下探索:
![]()
(1)數軸上表示5與﹣2兩點之間的距離是 ,
(2)數軸上表示x與2的兩點之間的距離可以表示為 .
(3)如果|x﹣2|=5,則x= .
(4)同理|x+3|+|x﹣1|表示數軸上有理數x所對應的點到﹣3和1所對應的點的距離之和,請你找出所有符合條件的整數x,使得|x+3|+|x﹣1|=4,這樣的整數是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解黔東南州某縣2016屆中考學生的體育考試得分情況,從該縣參加體育考試的4 000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數統計表和頻數直方圖.
成績分組 | 頻數 |
25≤x<30 | 4 |
30≤x<35 | m |
35≤x<40 | 24 |
40≤x<45 | 36 |
45≤x<50 | n |
50≤x<55 | 4 |
![]()
(1)求m,n的值,并補全頻數直方圖;
(2)若體育得分在40分以上(包括40分)為優秀,請問該縣中考體育成績優秀的學生人數約為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(請在括號里注明重要的推理依據)
如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數;
(2)當點P運動時,∠APB與∠ADB之間的數量關系是否隨之發生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規律.
(3)當點P運動到使∠ACB=∠ABD時,∠ABC的度數是 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經過O,D,C三點.![]()
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發,沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發,沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC=_____(用含x、y的代數式表示);
(2)如圖1,若x=y=90°,DE平分∠ADC,BF平分與∠ABC相鄰的外角,請寫出DE與BF的位置關系,并說明理由.
(3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線所在直線構成的銳角,
①當x<y時,若x+y=140°,∠DFB=30°試求x、y.
②小明在作圖時,發現∠DFB不一定存在,請直接指出x、y滿足什么條件時,∠DFB不存在.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com