【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構成等差數列,則數列a1 , a2 , a3的公差的最大值是 .
科目:高中數學 來源: 題型:
【題目】袋中有6個編號不同的黑球和3個編號不同的白球,這9個球的大小及質地都相同,現從該袋中隨機摸取3個球,則這三個球中恰有兩個黑球和一個白球的方法總數是 , 設摸取的這三個球中所含的黑球數為X,則P(X=k)取最大值時,k的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分別為BC,CD的中點,以A為圓心,AD為半徑的半圓分別交BA及其延長線于點M,N,點P在
上運動(如圖).若
,其中λ,μ∈R,則2λ﹣5μ的取值范圍是( ) ![]()
A.[﹣2,2]
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x﹣y﹣1=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明:
;
(Ⅲ)已知滿足xlnx=1的常數為k.令函數g(x)=mex+f(x)(其中e是自然對數的底數,e=2.71828…),若x=x0是g(x)的極值點,且g(x)≤0恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m≠0,向量
=(m,3m),向量
=(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“
∥
”是“|
|=
”的什么條件
(2)設命題p:若
⊥
,則m=﹣19,命題q:若集合A的子集個數為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+
)﹣2cos2B的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為( ) ![]()
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為
(φ為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ
(Ⅰ)求曲線C1的普通方程和C2的直角坐標方程;
(Ⅱ)已知曲線C3的極坐標方程為θ=α,0<α<π,ρ∈R,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4
,求實數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com