【題目】已知橢圓C的中心在原點,焦點在x軸上,D(0,2)為橢圓C短軸的一個端點,F為橢圓C的右焦點,線段DF的延長線與橢圓C相交于點E,且|DF|=3|EF|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C相交于A,B兩點,O為坐標(biāo)原點,若直線OA與OB的斜率之積為-
,求
的取值范圍.
【答案】(1)
+
=1(2)[-1,0)∪(0,1].
【解析】
(1)先由條件得b,再根據(jù)條件得E坐標(biāo),代入橢圓方程解得a2(2)先設(shè)A,B兩點坐標(biāo),化簡條件得y1y2=
x1x2,再代入化簡
=
x1x2,聯(lián)立直線方程與橢圓方程,解得x1,x2,最后根據(jù)基本不等式求最值,解得取值范圍.
解:(1)設(shè)橢圓的方程為
+
=1,(a>b>0),右焦點F(c,0),
∵D(0,2)為橢圓C短軸的一個端點,
∴b=2,
∵|DF|=3|EF|,
∴E(
,-
),
∴
+
=1,即a2=2c2,
又c2=a2-4,
∴a2=2(a2-4),
解得a2=8,
故橢圓方程為
+
=1.
(2)∵kOAkOB=
<0,設(shè)kOA=k≠0,則kOB=
,
設(shè)A(x1,y1),B(x2,y2),
∴![]()
=
,
即y1y2=
x1x2,
∴![]()
=x1x2+y1y2=
x1x2,
由
,消y可得x2+2k2x2=8,即x12=
,
同理x22=
=
,
∴x12x22=
=
≤
=
=4,
當(dāng)且僅當(dāng)4k2=
,即k=±
時取等號,
∴-2≤x1x2≤2,且x1x2≠0,
∴-1≤t≤1,且t≠0,
故
的取值范圍為[-1,0)∪(0,1].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是( )
![]()
A.甲種樹苗的平均高度大于乙種樹苗的平均高度,且甲種樹苗比乙種樹苗長得整齊
B.甲種樹苗的平均高度大于乙種樹苗的平均高度,但乙種樹苗比甲種樹苗長得整齊
C.乙種樹苗的平均高度大于甲種樹苗的平均高度,且乙種樹苗比甲種樹苗長得整齊
D.乙種樹苗的平均高度大于甲種樹苗的平均高度,但甲種樹苗比乙種樹苗長得整齊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的短軸端點為
,
,點
是橢圓
上的動點,且不與
,
重合,點
滿足
,
.
![]()
(Ⅰ)求動點
的軌跡方程;
(Ⅱ)求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入
,
,則輸出的
等于( )
![]()
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱
中,![]()
![]()
![]()
,![]()
![]()
:
![]()
(1)求證:
平面
;
(2)現(xiàn)將與四棱柱
形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為
,寫出
的解析式;(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
過點
,且離心率
.
(1)求橢圓
的方程;
(2)直線
的斜率為
,直線
與橢圓
交于
、
兩點,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的左、右焦點分別為
,右頂點為A,上頂點為B,且滿足向量
。
(1)若
,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com