【題目】如圖甲,在四邊形ABCD中,
,
是邊長為4的正三角形,把
沿AC折起到
的位置,使得平面PAC
平面ACD,如圖乙所示,點
分別為棱
的中點.
![]()
(1)求證:
平面
;
(2)求三棱錐
的體積.
科目:高中數學 來源: 題型:
【題目】全集
,非空集合
,且
中的點在平面直角坐標系
內形成的圖形關于
軸、
軸和直線
均對稱.下列命題:
①若
,則
;
②若
,則
中至少有8個元素;
③若
,則
中元素的個數一定為偶數;
④若
,則
.
其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中
中,曲線
的參數方程為
為參數,
). 以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知直線
的極坐標方程為
.
(1)設
是曲線
上的一個動點,當
時,求點
到直線
的距離的最大值;
(2)若曲線
上所有的點均在直線
的右下方,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線
:
(
,
)的左、右焦點分別為
、
,過點
作圓
:
的切線
,切點為
,且直線
與雙曲線
的一個交點
滿足
,設
為坐標原點,若
,則雙曲線
的漸近線方程為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知曲線
,曲線
的左右焦點是
,
,且
就是
的焦點,點
是
與
的在第一象限內的公共點且
,過
的直線
分別與曲線
、
交于點
和
.
![]()
(Ⅰ)求點
的坐標及
的方程;
(Ⅱ)若
與
面積分別是
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數,且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=
-1,若關于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在區間(-2,6)內恰有4個不等的實數根,則實數a的取值范圍是( )
A.
B. (1,4)
C. (1,8) D. (8,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一家公司生產某種品牌服裝的年固定成本為10萬元,每生產1千件需另投入2.7萬元.設該公司一年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(1)寫出年利潤W(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網絡外賣在
市的普及情況,
市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格(單位:人).
![]()
(1)根據表中數據,能否在犯錯誤的概率不超過0.15的前提下認為
市使用網絡外賣的情況與性別有關?
(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出了3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;
②將頻率視為概率,從
市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為
,求
的數學期望和方差.
參考公式:
,其中
.
參考數據:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com