如圖,直角梯形
與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求證:
;
(2)求直線
與平面
所成角的正弦值;
(1)取
中點(diǎn)
,連結(jié)
,
.證得
,由四邊形
為直角梯形,得到
,證得
平面
.推出
.
(2)直線
與平面
所成角的正弦值為
.
解析試題分析:(1)證明:取
中點(diǎn)
,連結(jié)
,
.![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/a/lp5jy.png" style="vertical-align:middle;" />,所以
2分
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/e8/8/ggb3a1.png" style="vertical-align:middle;" />為直角梯形,
,
,
所以四邊形
為正方形,所以
. 4分
所以
平面
.
所以
. 6分
(2)解法1:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/4/itvnl3.png" style="vertical-align:middle;" />平面
,且![]()
所以BC⊥平面
8分
則
即為直線
與平面
所成的角 9分
設(shè)BC=a,則AB=2a,
,所以![]()
則直角三角形CBE中,
。11分
即直線
與平面
所成角的正弦值為
. 。12分
解法2:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/4/itvnl3.png" style="vertical-align:middle;" />平面
,且
,![]()
所以
平面
,所以
.
由
兩兩垂直,建立如圖所示的空間直角坐標(biāo)系
. 因?yàn)槿切?img src="http://thumb.zyjl.cn/pic5/tikupic/82/5/1xmlo3.png" style="vertical-align:middle;" />為等腰直角三角形,所以
,設(shè)
,
則
.
所以
,平面
的一個法向量為
.
設(shè)直線
與平面
所成的角為
,
所以
,
即直線
與平面
所成角的正弦值為
.(參照解法1給步驟分) 12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離及體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡化證明過程。本題給出了兩種解法,便于比較借鑒。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖四棱錐E—ABCD中,底面ABCD是平行四邊形。∠ABC=45°,BE=BC=
EA=EC=6,M為EC中點(diǎn),平面BCE⊥平面ACE,AE⊥EB![]()
(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且
.證明:平面PAD⊥平面PDC.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
為圓
的直徑,點(diǎn)
、
在圓
上,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。![]()
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com