【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬(wàn)元).
(Ⅰ)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
,
,
,
,
,
,
.如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過(guò)2萬(wàn)元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有
的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
附:![]()
![]()
【答案】(Ⅰ)45;(Ⅱ)
;(Ⅲ)有
的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.
【解析】分析:(Ⅰ)利用分層抽樣中每層所抽取的比例數(shù)相等求得答案;(Ⅱ)根據(jù)頻率分布直方圖可得該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;(Ⅲ)由題意列出2×2列聯(lián)表,計(jì)算出
的值,結(jié)合附表得答案.
詳解:(Ⅰ)由已知可得每戶居民被抽取的概率為0.1,故應(yīng)手機(jī)
戶山區(qū)家庭的樣本數(shù)據(jù).
(Ⅱ)由直方圖可知該地區(qū)2017年家庭年收入超過(guò)1.5萬(wàn)元的概率約為
.
(Ⅲ)樣本數(shù)據(jù)中,年收入超過(guò)2萬(wàn)元的戶數(shù)為
戶.
而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過(guò)2萬(wàn)元,故列聯(lián)表如下:
![]()
所以
,
∴有
的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,–2),C(4,1).
(1)若
,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量
,
,若k
–
與
+3
平行,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:用平行于圓錐母線的平面(不過(guò)頂點(diǎn))截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,![]()
是底面圓
的兩條互相垂直的直徑,
是母線
的中點(diǎn),已知過(guò)
與
的平面與圓錐側(cè)面的交線是以
為頂點(diǎn)的圓錐曲線的一部分,則該圓錐曲線的焦點(diǎn)到其準(zhǔn)線的距離等于__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
學(xué)校有15位數(shù)學(xué)老師,其中9位男老師,6位女老師,
學(xué)校有10位數(shù)學(xué)老師,其中3位男老師,7位女老師,為了實(shí)現(xiàn)師資均衡,現(xiàn)從
學(xué)校任意抽取一位數(shù)學(xué)老師到
學(xué)校,然后從
學(xué)校隨機(jī)抽取一位數(shù)學(xué)老師到市里上公開(kāi)課,則在
學(xué)校抽到
學(xué)校的老師是男老師的情況下,從
學(xué)校抽取到市里上公開(kāi)課的也是男老師的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
平面
,
,
,
,
.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成的線面角的正弦值為
,求
長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
有兩個(gè)極值點(diǎn)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)
和溫度
有關(guān),現(xiàn)收集了4組觀測(cè)數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù) | 5 | 20 | 100 | 325 |
![]()
參考數(shù)據(jù):
,
,
,
,
,![]()
,
,
,![]()
| 5 | 20 | 100 | 325 |
| 1.61 | 3 | 4.61 | 5.78 |
(1)根據(jù)散點(diǎn)圖判斷
與
哪一個(gè)更適宜作為產(chǎn)卵數(shù)
關(guān)于溫度
的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過(guò)50,則溫度控制在多少
以下?(最后結(jié)果保留到整數(shù))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com