【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓上.
(
)求橢圓
的方程.
(
)設(shè)動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)
為圓心的圓,滿足此圓與
相交于兩點(diǎn)
,
(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線
、
的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
【答案】(1) 橢圓方程為
;(2)見解析.
【解析】試題分析:(I)借助題設(shè)條件建立方程組求解;(II)借助題設(shè)運(yùn)用直線與橢圓的位置關(guān)系推證和探求.
試題解析:
(I)由題意得:
,
,
又點(diǎn)
在橢圓
上,∴
,解得
,
,
,
∴橢圓
的方程為
.………………5分
(II)存在符合條件的圓,且此圓的方程為
.
證明如下:假設(shè)存在符合條件的圓,并設(shè)此圓的方程為
.
當(dāng)直線
的斜率存在時(shí),設(shè)
的方程為
.
由方程組
得
.
∵直線
與橢圓
有且僅有一個(gè)公共點(diǎn),
∴
,即
.
由方程組
得
,
則
.
設(shè)
,則
,
,
設(shè)直線
的斜率分別為
,
∴![]()
,將
代入上式,
得
.
要使得
為定值,則
,即
,代入
驗(yàn)證知符合題意.
∴當(dāng)圓的方程為
時(shí),圓與
的交點(diǎn)
滿足
為定值
.
當(dāng)直線
的斜率不存在時(shí),由題意知
的方程為
.
此時(shí),圓
與
的交點(diǎn)
也滿足
.
綜上,當(dāng)圓的方程為
時(shí),
圓與
的交點(diǎn)
滿足直線
的斜率之積為定值
.……………………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)
是棱長(zhǎng)為2的正方體
的棱
的中點(diǎn),點(diǎn)
在面
所在的平面內(nèi),若平面
分別與平面
和平面
所成的銳二面角相等,則點(diǎn)
到點(diǎn)
的最短距離是( )
A.
B.
C. 1 D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段:
,
,
,
,
,
后得到如圖所示的頻率分布直方圖,問:
![]()
(1)在40名讀書者中年齡分布在
的人數(shù);
(2)估計(jì)40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在
的讀書者中任取2名,求這兩名讀書者年齡在
的人數(shù)
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的最小正周期;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)若把
向右平移
個(gè)單位得到函數(shù)
,求
在區(qū)間
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在吸煙與患肺癌這兩個(gè)分類變量的獨(dú)立性檢驗(yàn)的計(jì)算中,下列說法正確的是( )
A. 若
的觀測(cè)值為
,在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為吸煙與患肺癌有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺癌.
B. 由獨(dú)立性檢驗(yàn)可知,在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為吸煙與患肺癌有關(guān)系時(shí),我們說某人吸煙,那么他有
的可能患有肺癌.
C. 若從統(tǒng)計(jì)量中求出在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為吸煙與患肺癌有關(guān)系,是指有
的可能性使得判斷出現(xiàn)錯(cuò)誤.
D. 以上三種說法都不正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
中,側(cè)棱
底面
,且各棱長(zhǎng)均相等,
分別為棱
的中點(diǎn).
![]()
(1)證明
平面
;
(2)證明平面
平面
;
(3)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com