【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
![]()
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
【答案】見解析
【解析】解:(1)證明:連接AC,由AE
CG可知四邊形AEGC為平行四邊形.
所以EG∥AC,而AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,
因?yàn)锽D∩BF=B,所以EG⊥平面BDHF,又DF平面BDHF,所以EG⊥DF。
(2)設(shè)AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四邊形EFGH為平行四邊形,所以P為EG的中點(diǎn),O為AC的中點(diǎn),所以O(shè)P綊AE,
從而OP⊥平面ABCD,
又OA⊥OB,所以O(shè)A,OB,OP兩兩垂直,由平面幾何知識(shí),得BF=2。
如圖,建立空間直角坐標(biāo)系Oxyz,則B(0,2,0),E(2
,0,3),F(xiàn)(0,2,2),P(0,0,3),
![]()
所以
=(2
,-2,3),
=(2
,0,0,),
=(0,2,-1).
設(shè)平面EFGH的法向量為n=(x,y,z),
![]()
可得![]()
令y=1,則z=2。
所以n=(0,1,2).
設(shè)BE與平面EFGH所成角為θ,則sin θ=
=
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
![]()
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>
列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的首項(xiàng)
,
.
(1)證明:數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的前
項(xiàng)和為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,圓
.
(1)若過點(diǎn)
的圓的切線只有一條,求
的值及切線方程;
(2)若過點(diǎn)
且在兩坐標(biāo)軸上截距相等的直線與圓相切,求
的值及切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓![]()
(
)的離心率是
,過點(diǎn)
(
,
)的動(dòng)直線
與橢圓相交于
,
兩點(diǎn),當(dāng)直線
平行于
軸時(shí),直線
被橢圓
截得的線段長(zhǎng)為
.
![]()
⑴求橢圓
的方程:
⑵已知
為橢圓的左端點(diǎn),問: 是否存在直線
使得
的面積為
?若不存在,說明理由,若存在,求出直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)均相等的正三棱柱ABCA1B1C1中,D為BB1的中點(diǎn),F(xiàn)在AC1上,且DF⊥AC1,則下述結(jié)論:
![]()
①AC1⊥BC;
②AF=FC1;
③平面DAC1⊥平面ACC1A1,其中正確的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市的高一學(xué)生中隨機(jī)抽取400名同學(xué)的體重進(jìn)行統(tǒng)計(jì),得到如圖所示頻率分布直方圖.
(Ⅰ)估計(jì)從該市高一學(xué)生中隨機(jī)抽取一人,體重超過
的概率;
(Ⅱ)假設(shè)該市高一學(xué)生的體重
服從正態(tài)分布
.
(ⅰ)利用(Ⅰ)的結(jié)論估計(jì)該高一某個(gè)學(xué)生體重介于
之間的概率;
(ⅱ)從該市高一學(xué)生中隨機(jī)抽取3人,記體重介于
之間的人數(shù)為
,利用(ⅰ)的結(jié)論,求
的分布列及
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的最小正周期;
(2)若函數(shù)
對(duì)任意
,有
,求函數(shù)
在[﹣
,
]上的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com