【題目】為認真貫徹落實黨中央國務院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調控政策的連續性和穩定性,進一步穩定某省市商品住房市場,該市人民政府辦公廳出臺了相關文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區的房價均值數據:
| 2 | 3 | 4 | 5 | 6 |
| 9.80 | 9.70 |
| 9.30 | 9.20 |
已知:
.![]()
(1)若變量
、
具有線性相關關系,求房價均價
(千元/平方米)關于月份
的線性回歸方程
;
(2)根據線性回歸方程預測該市某城區7月份的房價.
(參考公式:用最小二乘法求線性回歸方程
的系數公式
)
科目:高中數學 來源: 題型:
【題目】設橢圓
,直線
經過點
,直線
經過點
,直線
直線
,且直線
分別與橢圓
相交于
兩點和
兩點.
(Ⅰ)若
分別為橢圓
的左、右焦點,且直線
軸,求四邊形
的面積;
(Ⅱ)若直線
的斜率存在且不為0,四邊形
為平行四邊形,求證:
;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形
能否為矩形,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
過點
,過坐標原點
作兩條互相垂直的射線與橢圓
分別交于
,
兩點.
(1)證明:當
取得最小值時,橢圓
的離心率為
.
(2)若橢圓
的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】臨近開學季,某大學城附近的一款“網紅”書包銷售火爆,其成本是每件15元.經多數商家銷售經驗,這款書包在未來1個月(按30天計算)的日銷售量
(個)與時間
(天)的關系如下表所示:
時間( | 1 | 4 | 7 | 11 | 28 | … |
日銷售量( | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內,前15天每天的價格
(元/個)與時間
(天)的函數關系式為
(且
為整數),后15天每天的價格
(元/個)與時間
(天)的函數關系式為
(且
為整數).
(1)認真分析表格中的數據,用所學過的一次函數、反比例函數的知識確定一個滿足這些數據
(個)與
(天)的關系式;
(2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈
元利潤
給該城區養老院.商家通過銷售記錄發現,這周中,每天扣除捐贈后的日銷售利潤隨時間
(天)的增大而增大,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com