【題目】已知定義域為R的函數
是奇函數
(1)求
的值
(2)判斷f(x)在
上的單調性。(直接寫出答案,不用證明)
(3)若對于任意
,不等式
恒成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】橢圓
的中心在坐標原點,焦點在
軸上,焦點到短軸端點的距離為2,離心率為
.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線
與橢圓
交于
,
兩點且
,是否存在以原點
為圓心的定圓與直線
相切?若存在求出定圓的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設
是實數,
,
(1)若函數
為奇函數,求
的值;
(2)試用定義證明:對于任意
,
在
上為單調遞增函數;
(3)若函數
為奇函數,且不等式
對任意
恒成立,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b為常數,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等實數根.
(1)求函數f(x)的解析式;
(2)當x∈[1,2]時,求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修
:不等式選講
已知函數f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017屆河北省正定中學高三上學期第三次月考(期中)數學(理)】在平面直角坐標系中,當
不是原點時,定義
的“伴隨點”為
;當
是原點時,定義
的“伴隨點”為它自身,平面曲線
上所有點的“伴隨點”所構成的曲線
定義為曲線
的“伴隨曲線”,現有下列命題:
①若點
的“伴隨點”是點
,則點
的“伴隨點”是點
;
②若曲線
關于
軸對稱,則其“伴隨曲線”
關于
軸對稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地政府決定建造一批保障房供給社會,緩解貧困人口的住房問題,計劃用1 600萬元購得一塊土地,在該土地上建造10幢樓房的住宅小區,每幢樓的樓層數相同,且每層建筑面積均為1 000平方米,每平方米的建筑費用與樓層有關,第x層樓房每平方米的建筑費用為(kx+800)元(其中k為常數).經測算,若每幢樓為5層,則該小區每平方米的平均綜合費用為1 270元.
注:每平方米平均綜合費用=
.
(1) 求k的值;
(2) 問要使該小區樓房每平方米的平均綜合費用最低,應將這10幢樓房建成多少層?此時每平方米的平均綜合費用為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com