【題目】已知函數
.
為實數,且
,記由所有
組成的數集為
.
(1)已知
,求
;
(2)對任意的
,
恒成立,求
的取值范圍;
(3)若
,
,判斷數集
中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】(1)求證:
.
(2)某同學在一次研究性學習中發現,以下五個式子的值都等于同一個常數:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個式子中選擇一個,求出這個常數;
②根據①的計算結果,將該同學的發現推廣為三角恒等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三年級舉行了一次全年級的大型考試,在數學成績優秀和非優秀的學生中,物理、化學、總分成績也為優秀的人數如下表所示,則我們能以99%的把握認為數學成績優秀與物理、化學、總分成績優秀有關系嗎?
物理優秀 | 化學優秀 | 總分優秀 | |
數學優秀 | 228 | 225 | 267 |
數學非優秀 | 143 | 156 | 99 |
注:該年級此次考試中數學成績優秀的有360人,非優秀的有880人.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為
的正三角形,E,F分別是PA,AB的中點,∠CEF=90°.則球O的體積為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,
平面ABCD,底部ABCD為菱形,E為CD的中點.
![]()
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種機器零件轉速在符合要求的范圍內使用時間隨機器運轉速度的變化而變化,某檢測員隨機收集了20個機器零件的使用時間與轉速的數據,列表如下:
機器轉速(轉/分) | 189 | 193 | 190 | 185 | 183 | 202 | 187 | 203 | 192 | 201 |
零件使用時間(月) | 43 | 33 | 39 | 37 | 38 | 37 | 38 | 35 | 38 | 35 |
機器轉速(轉/分) | 193 | 197 | 191 | 186 | 191 | 188 | 185 | 204 | 201 | 189 |
零件使用時間(月) | 37 | 40 | 41 | 37 | 35 | 37 | 42 | 36 | 34 | 40 |
(Ⅰ)若“轉速大于200轉/分”為“高速”,“轉速不大于200轉/分”為“非高速”,“使用時間大于36個月”的為“長壽命”,“使用時間不大于36個月”的為“非長壽命”,請根據上表數據完成下面的
列聯表:
高速 | 非高速 | 合計 | |
長壽命 | |||
非長壽命 | |||
合計 |
(Ⅱ)根據(Ⅰ)中的
列聯表,試運用獨立性檢驗的思想方法:能否在犯錯誤的概率不超過0.01的前提下認為零件使用壽命的長短與轉速高低之間的關系.
參考公式:
,其中
.
參考數據:
| 0.050 | 0.010 | 0.005 | 0.001 |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
+bx+c,
(1)若f(x)在(-∞,+∞)上是增函數,求b的取值范圍;
(2)若f(x)在x=1處取得極值,且x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個商場經銷某種商品,根據以往資料統計,每位顧客采用的分期付款次數
的分布列為:
| 1 | 2 | 3 | 4 | 5 |
| 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場經銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.
表示經銷一件該商品的利潤.
(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;
(2)求
的分布列及期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com