【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的
兩班中各抽5名學(xué)生進(jìn)行視力檢測,檢測的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測結(jié)果是:
.
班5名學(xué)生的視力檢測結(jié)果是:
.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個班的學(xué)生視力較好?并計(jì)算
班的5名學(xué)生視力的方差;
(2)現(xiàn)從
班上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于
的概率.
【答案】(1)
班學(xué)生的視力較好,
;(2)
.
【解析】試題分析:此題主要考查樣本數(shù)據(jù)特征數(shù)的應(yīng)用,以及古典概型的概率計(jì)算,屬于中低檔題.(1)根據(jù)題意分別算出兩個班學(xué)生的視力平均數(shù),
,
,由于
,所以
班學(xué)生的視力較好;由樣本數(shù)據(jù)方差的計(jì)算公式即可算出
班
名學(xué)生視力的方差為
;(2)根據(jù)
班
名學(xué)生視力的數(shù)據(jù),從中隨機(jī)選取
名,則選取的結(jié)果有:
,
,
,
,
共
個基本事件,其中至少有
名學(xué)生的視力不低于
的基本事件有
個,故所求概率
.
試題解析:(1)
班5名學(xué)生的視力平均數(shù)為
,
班5名學(xué)生的視力平均數(shù)為
.………………3分
從數(shù)據(jù)結(jié)果來看
班學(xué)生的視力較好.……………………………………4分
.………………6分
(2)從
班的上述5名學(xué)生中隨機(jī)選取2名,則這兩名學(xué)生視力檢測結(jié)果有:
,
,
,
,
共10個基本事件,…………………………9分
其中這2名學(xué)生中至少有1名學(xué)生的視力不低于
的基本事件有7個,則所求概率
.…………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點(diǎn)C在直線3x﹣y=0上,頂點(diǎn)A、B的坐標(biāo)分別為(4,2),(0,5).
(Ⅰ)求過點(diǎn)A且在x,y軸上的截距相等的直線方程;
(Ⅱ)若△ABC的面積為10,求頂點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,過點(diǎn)
的直線與拋物線
相交于點(diǎn)
、
兩點(diǎn),設(shè)
,
.
(1)求證:
為定值;
(2)是否存在平行于
軸的定直線被以
為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
.
⑴當(dāng)
,求函數(shù)
在區(qū)間
上的極值;
⑵當(dāng)
時,函數(shù)
只有一個零點(diǎn),求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,和平面內(nèi)一點(diǎn)
(
),過點(diǎn)
任作直線
與橢圓
相交于
,
兩點(diǎn),設(shè)直線
,
,
的斜率分別為
,
,
,
,試求
,
滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù)
,下列命題正確的是 .
①函數(shù)
關(guān)于原點(diǎn)
中心對稱;
②以
,
兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與
交于
兩點(diǎn),則這四個點(diǎn)的橫坐標(biāo)滿足關(guān)系
;
③以
為切點(diǎn),作切線與
圖像交于點(diǎn)
,再以點(diǎn)
為切點(diǎn)作直線與
圖像交于點(diǎn)
,再以點(diǎn)
作切點(diǎn)作直線與
圖像交于點(diǎn)
,則
點(diǎn)橫坐標(biāo)為
;
④若
,函數(shù)
圖像上存在四點(diǎn)
,使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)若
是函數(shù)
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若對任意的
(
為自然對數(shù)的底數(shù))都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示.
![]()
(1)請將字母
標(biāo)記在長方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)在長方體中,判斷直線
與平面
的位置關(guān)系,并證明你的結(jié)論;
(3)在長方體中,設(shè)
的中點(diǎn)為
,且
,
,求證:
平面
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com