【題目】已知函數(shù)
圖象如圖,
是
的導(dǎo)函數(shù),則下列數(shù)值排序正確的是( )
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
【答案】C
【解析】結(jié)合函數(shù)的圖像可知過(guò)點(diǎn)
的切線的傾斜角最大,過(guò)點(diǎn)
的切線的傾斜角最小,又因?yàn)辄c(diǎn)
的切線的斜率
,點(diǎn)
的切線斜率
,直線
的斜率
,故
,應(yīng)選答案C。
點(diǎn)睛:本題旨在考查導(dǎo)數(shù)的幾何意義與函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)的綜合運(yùn)用。求解時(shí)充分借助題設(shè)中所提供的函數(shù)圖形的直觀,數(shù)形結(jié)合進(jìn)行解答。先將經(jīng)過(guò)兩切點(diǎn)
的直線繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)到與函數(shù)的圖像相切,再將經(jīng)過(guò)兩切點(diǎn)的直線繞點(diǎn)
順時(shí)針旋轉(zhuǎn)到與函數(shù)的圖像相切,這個(gè)過(guò)程很容易發(fā)現(xiàn)
,從而將問(wèn)題化為直觀圖形的問(wèn)題來(lái)求解。
【題型】單選題
【結(jié)束】
9
【題目】已知
、
為雙曲線
:
的左、右焦點(diǎn),點(diǎn)
在
上,
,則
( )
A.
B.
C.
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,CA=CD=
AB=1,
=1,sin∠BCD=
. ![]()
(1)求BC的長(zhǎng);
(2)求四邊形ABCD的面積;
(3)求sinD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A
過(guò)定點(diǎn)
,且與定直線
相切,動(dòng)圓圓心
的軌跡方程為
,直線
過(guò)點(diǎn)
交曲線
于
兩點(diǎn).
(1)若
交
軸于點(diǎn)
,求
的取值范圍;
(2)若
的傾斜角為
,在
上是否存在點(diǎn)
使
為正三角形?若能,求點(diǎn)
的坐標(biāo);若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的方程為ρsin(θ+
)=
,圓C的方程為
(θ為參數(shù)).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點(diǎn)到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸上的拋物線過(guò)點(diǎn)
,過(guò)
作拋物線的動(dòng)弦
,
,并設(shè)它們的斜率分別為
,
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若
,求證:直線
的斜率為定值,并求出其值;
(III)若
,求證:直線
恒過(guò)定點(diǎn),并求出其坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度
(單位:千克/年)是養(yǎng)殖密度
(單位:尾/立方米)的函數(shù).當(dāng)
不超過(guò)
尾/立方米時(shí),
的值為
千克/年;當(dāng)
時(shí),
是
的一次函數(shù),且當(dāng)
時(shí),
.
(
)當(dāng)
時(shí),求
關(guān)于
的函數(shù)的表達(dá)式.
(
)當(dāng)養(yǎng)殖密度
為多大時(shí),每立方米的魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn)
,長(zhǎng)軸在
軸上,上頂點(diǎn)為
,左,右焦點(diǎn)分別為
,線段
的中點(diǎn)分別為
,且
是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)
做直線
交橢圓于
兩點(diǎn),使
,求直線
的方程.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓C:
+
=1(a>b>0)的離心率是
,且過(guò)點(diǎn)(
,
).設(shè)點(diǎn)A1 , B1分別是橢圓的右頂點(diǎn)和上頂點(diǎn),如圖所示過(guò) 點(diǎn)A1 , B1引橢圓C的兩條弦A1E、B1F.![]()
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0②設(shè)直線EF的方程為y=k0x+b(﹣1≤b≤1)設(shè)△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是R上的偶函數(shù),在(﹣3,﹣2)上為減函數(shù)且對(duì)x∈R都有f(2﹣x)=f(x),若A,B是鈍角三角形ABC的兩個(gè)銳角,則( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)與與f(cosB)的大小關(guān)系不確定
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com