【題目】
是坐標(biāo)原點,橢圓
:
的左右焦點分別為
,
,點
在橢圓上,若
的面積最大時
且最大面積為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)直線
:
與橢圓
在第一象限交于點
,點
是第四象限內(nèi)的點且在橢圓
上,線段
被直線
垂直平分,直線
與橢圓交于另一點
,求證:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)不需證明,直接寫出
的奇偶性:
(Ⅱ)討論
的單調(diào)性,并證明
有且僅有兩個零點:
(Ⅲ)設(shè)
是
的一個零點,證明曲線
在點
處的切線也是曲線
的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且對一切正整數(shù)
都有
.
(1)求證:
;
(2)求數(shù)列
的通項公式;
(3)是否存在實數(shù)
,使不等式
,對一切正整數(shù)
都成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
和圓
,
、
為橢圓
的左、右焦點,點
在橢圓
上,當(dāng)直線
與圓
相切時,
.
(I)求
的方程;
(Ⅱ)直線
與橢圓
和圓
都相切,切點分別為
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線
的普通方程和極坐標(biāo)方程;
(2)設(shè)直線
與曲線
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)當(dāng)
時,判斷直線
與曲線
的位置關(guān)系;
(2)若直線
與曲線
相交所得的弦長為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
是定義在
上的奇函數(shù),且函數(shù)
為偶函數(shù),當(dāng)
時,
,若
有三個零點,則實數(shù)
的取值集合是( )
A.
,
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的方程
有實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在R上的函數(shù)
的導(dǎo)函數(shù),且
,則
的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com