【題目】已知函數f(x)=x2-2|x|-1,-3≤x≤3.
(1)證明:f(x)是偶函數;
(2)指出函數f(x)的單調區間;
(3)求函數的值域.
科目:高中數學 來源: 題型:
【題目】設A是同時符合以下性質的函數f(x)組成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數.
(1)判斷函數f1(x)=2-
和f2(x)=1+3·
(x≥0)是否屬于集合A,并簡要說明理由;
(2)把(1)中你認為是集合A中的一個函數記為g(x),若不等式g(x)+g(x+2)≤k對任意的x≥0總成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環節中,評委將他們的筆試成績作為樣本數據,繪制成如圖所示的莖葉圖,為了增加結果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,知識告知大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.
![]()
(1)求乙班總分超過甲班的概率;
(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,
①請你從平均分和方差的角度來分析兩個班的選手的情況;
②主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總人數為
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個班級進行數學考試,按照大于或等于85分為優秀,85分以下為非優秀統計成績后,得到如下的2×2列聯表.已知從全部210人中隨機抽取1人為優秀的概率為
.
![]()
(1)請完成上面的2×2列聯表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關”;
(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優秀人數為ξ,若每次抽取的結果是相互獨立的,求ξ的分布列及數學期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附: ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=3,a10=21,通項an相應的函數是一次函數.
(1) 求數列{an}的通項公式;
(2) 若{bn}是由a2,a4,a6,a8,…組成,試求數列{bn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com