【題目】已知一個口袋有m個白球,n個黑球(m,n
,n
2),這些球除顏色外全部相同。現將口袋中的球隨機的逐個取出,并放入如圖所示的編號為1,2,3,……,m+n的抽屜內,其中第k次取球放入編號為k的抽屜(k=1,2,3,……,m+n).
![]()
(1)試求編號為2的抽屜內放的是黑球的概率p;
(2)隨機變量x表示最后一個取出的黑球所在抽屜編號的倒數,E(x)是x的數學期望,證明 ![]()
【答案】(1)
(2)見解析
【解析】試題分析:(1)根據條件先確定總事件數為
,而編號為2的抽屜內放的是黑球的事件數為
,最后根據古典概型的概率公式即可求概率;(2)先確定最后一個取出的黑球所在抽屜編號的倒數為
,所對應的概率
,再根據數學期望公式得
,利用性質
,進行放縮變形:
,最后利用組合數性質
化簡,可得結論.
試題解析:解:(1)編號為2的抽屜內放的是黑球的概率
為:
.
(2)隨機變量X的概率分布為:
X |
|
|
| … |
| … |
|
P |
|
|
| … |
| … |
|
隨機變量X的期望為:
.
所以![]()
![]()
![]()
![]()
![]()
![]()
.
點睛:求解離散型隨機變量的數學期望的一般步驟為:
(1)“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;
(2)“探求概率”,即利用排列組合、枚舉法、概率公式(常見的有古典概型公式、幾何概型公式、互斥事件的概率和公式、獨立事件的概率積公式,以及對立事件的概率公式等),求出隨機變量取每個值時的概率;
(3)“寫分布列”,即按規范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;
(4)“求期望值”,一般利用離散型隨機變量的數學期望的定義求期望的值,對于有些實際問題中的隨機變量,如果能夠斷定它服從某常見的典型分布(如二項分布
),則此隨機變量的期望可直接利用這種典型分布的期望公式(
)求得.因此,應熟記常見的典型分布的期望公式,可加快解題速度.
科目:高中數學 來源: 題型:
【題目】已知一個口袋有m個白球,n個黑球(m,n
,n
2),這些球除顏色外全部相同。現將口袋中的球隨機的逐個取出,并放入如圖所示的編號為1,2,3,……,m+n的抽屜內,其中第k次取球放入編號為k的抽屜(k=1,2,3,……,m+n).
![]()
(1)試求編號為2的抽屜內放的是黑球的概率p;
(2)隨機變量x表示最后一個取出的黑球所在抽屜編號的倒數,E(x)是x的數學期望,證明 ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C1和C2的參數方程分別是
(φ為參數)和
(φ為參數),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
是橢圓
的兩個焦點,
是橢圓
上一點,當
時,有
.
(1)求橢圓
的標準方程;
(2)設過橢圓右焦點
的動直線
與橢圓交于
兩點,試問在
鈾上是否存在與
不重合的定點
,使得
恒成立?若存在,求出定點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“回文數”是指從左到右與從右到左讀都一樣的正整數,如22,121,3553等.顯然2位“回文數”共9個:11,22,33,…,99.現從9個不同2位“回文數”中任取1個乘以4,其結果記為X;從9個不同2位“回文數”中任取2個相加,其結果記為Y.
(1)求X為“回文數”的概率;
(2)設隨機變量
表示X,Y兩數中“回文數”的個數,求
的概率分布和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現從袋中隨機取兩個球.
(Ⅰ)若兩個球顏色不同,求不同取法的種數;
(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知變量
、
之間的線性回歸方程為
,且變量
、
之間的一-組相關數據如下表所示,則下列說法錯誤的是( )
|
|
|
|
|
|
|
|
|
|
A.可以預測,當
時,
B.![]()
C.變量![]()
之間呈負相關關系D.該回歸直線必過點![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為
(α為參數),曲線C2的參數方程為
(β為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和C2的極坐標方程;
(2)若點A在曲線C1上,點B在曲線C2上,且∠AOB
,求|OA||OB|的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com