【題目】已知直線
的參數(shù)方程為
(其中
為參數(shù)),以原點(diǎn)為極點(diǎn),以
軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
為常數(shù),且
),直線
與曲線
交于
兩點(diǎn).
(1)若
,求實(shí)數(shù)
的值;
(2)若點(diǎn)
的直角坐標(biāo)為
,且
,求實(shí)數(shù)
的取值范圍.
【答案】(1)
; (2)
.
【解析】
(1)將直線的參數(shù)方程化為為普通方程,曲線C的極坐標(biāo)方程化為普通方程,再利用直線與圓的弦長公式求解.
(2)直線的參數(shù)方程與圓的普通方程聯(lián)立,根據(jù)參數(shù)的幾何意義,則有
求解.
(1)曲線
的極坐標(biāo)方程可化為
,
化為直角坐標(biāo)系下的普通方程為:
,即
.
直線
的普通方程為:
,
而點(diǎn)
到直線
的距離為
,
所以
,即
,
又因?yàn)?/span>
,所以
.
(2)顯然點(diǎn)
在直線
上,把
代入![]()
并整理可得
,
設(shè)點(diǎn)
對應(yīng)的參數(shù)分別為
.
則
,解得
或
.
則
,解得
或
.
而
,
實(shí)數(shù)m的取值范圍是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)
在正視圖上的對應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知直線
的參數(shù)方程:
(
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸非負(fù)半軸為極軸(取相同單位長度)建立極坐標(biāo)系,圓
的極坐標(biāo)方程為:
.
(1)將直線
的參數(shù)方程化為普通方程,圓
的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓
上的點(diǎn)到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)若
,求曲線
與直線
的兩個交點(diǎn)之間的距離;
(2)若曲線
上的點(diǎn)到直線
距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年席卷全球的新冠肺炎給世界人民帶來了巨大的災(zāi)難,面對新冠肺炎,早發(fā)現(xiàn)、早診斷、早隔離、早治療是有效防控疾病蔓延的重要舉措之一.某社區(qū)對
位居民是否患有新冠肺炎疾病進(jìn)行篩查,先到社區(qū)醫(yī)務(wù)室進(jìn)行口拭子核酸檢測,檢測結(jié)果成陽性者,再到醫(yī)院做進(jìn)一步檢查,己知隨機(jī)一人其口拭子核酸檢測結(jié)果成陽性的概率為
%,且每個人的口拭子核酸是否呈陽性相互獨(dú)立.
(1)假設(shè)該疾病患病的概率是
%,且患病者口拭子核酸呈陽性的概率為
%,設(shè)這
位居民中有一位的口拭子核酸檢測呈陽性,求該居民可以確診為新冠肺炎患者的概率;
(2)根據(jù)經(jīng)驗(yàn),口拭子核酸檢測采用分組檢測法可有效減少工作量,具體操作如下:將
位居民分成若干組,先取每組居民的口拭子核酸混在一起進(jìn)行檢測,若結(jié)果顯示陰性,則可斷定本組居民沒有患病,不必再檢測;若結(jié)果顯示陽性,則說明本組中至少有一位居民患病,需再逐個進(jìn)行檢測,現(xiàn)有兩個分組方案:
方案一:將
位居民分成
組,每組
人;
方案二:將
位居民分成
組,每組
人;
試分析哪一個方案的工作量更少?
(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標(biāo)準(zhǔn),規(guī)定以
、
、
、
、
、
等標(biāo)記來表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用
系列和
系列,其中系列的幅面規(guī)格為:①
、
、
、
、
所有規(guī)格的紙張的幅寬(以
表示)和長度(以
表示)的比例關(guān)系都為
;②將
紙張沿長度方向?qū)﹂_成兩等分,便成為
規(guī)格,
紙張沿長度方向?qū)﹂_成兩等分,便成為
規(guī)格,…,如此對開至
規(guī)格.現(xiàn)有
、
、
、
、
紙各一張.若
紙的寬度為
,則
紙的面積為________
;這
張紙的面積之和等于________
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的最小正周期為
,其圖象關(guān)于直線
對稱.給出下面四個結(jié)論:①將
的圖象向右平移
個單位長度后得到函數(shù)圖象關(guān)于原點(diǎn)對稱;②點(diǎn)
為
圖象的一個對稱中心;③
;④
在區(qū)間
上單調(diào)遞增.其中正確的結(jié)論為( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)運(yùn)動計步已成為一種時尚,某中學(xué)統(tǒng)計了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
![]()
(Ⅰ)求直方圖中
的值,并由頻率分布直方圖估計該校教職工一天步行數(shù)的中位數(shù);
(Ⅱ)若該校有教職工175人,試估計一天行走步數(shù)不大于130百步的人數(shù);
(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動,再從6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來自區(qū)間
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日報記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開二維碼也需要時間和手機(jī)信號.刷臉支付將會替代手機(jī),成為新的支付方式.某地從大型超市門口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 總計 | |
刷臉支付 | 18 | 25 | |
非刷臉支付 | 13 | ||
總計 | 50 |
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為使用刷臉支付與性別有關(guān)?
(2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎活動,抽獎活動規(guī)則如下:
“一等獎”中獎概率為0.25,獎品為10元購物券
張(
,且
),“二等獎”中獎概率0.25,獎品為10元購物券兩張,“三等獎”中獎概率0.5,獎品為10元購物券一張,每位顧客是否中獎相互獨(dú)立,記參與抽獎的兩位顧客中獎購物券金額總和為
元,若要使
的均值不低于50元,求
的最小值.
附:
,其中
.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.869 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com