【題目】已知拋物線(xiàn)
,拋物線(xiàn)
與圓
的相交弦長(zhǎng)為4.
(1)求拋物線(xiàn)
的標(biāo)準(zhǔn)方程;
(2)點(diǎn)
為拋物線(xiàn)
的焦點(diǎn),
為拋物線(xiàn)
上兩點(diǎn),
,若
的面積為
,且直線(xiàn)
的斜率存在,求直線(xiàn)
的方程.
【答案】(1)
;(2)
或
.
【解析】
(1)利用圓與拋物線(xiàn)的對(duì)稱(chēng)性可知,點(diǎn)
在拋物線(xiàn)和圓上,代入方程即可求解.
(2)設(shè)直線(xiàn)
的方程為
,點(diǎn)
的坐標(biāo)分別為
,將拋物線(xiàn)與直線(xiàn)聯(lián)立,分別消
,再利用韋達(dá)定理可得兩根之和、兩根之積,根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得
,
的面積為![]()
即可求解.
(1)由圓及拋物線(xiàn)的對(duì)稱(chēng)性可知,點(diǎn)
既在拋物線(xiàn)
上也在圓
上,
有:
,解得![]()
故拋物線(xiàn)
的標(biāo)準(zhǔn)方程的![]()
(2)設(shè)直線(xiàn)
的方程為
,
點(diǎn)
的坐標(biāo)分別為
.
聯(lián)立方程
,消去
后整理為
,
可得
,![]()
聯(lián)立方程
,消去
后整理為
,
可得
,
,得![]()
由
有,
,
![]()
,可得![]()
的面積為![]()
![]()
可得
,有
或![]()
聯(lián)立方程
解得
或
,又由
,
故此時(shí)直線(xiàn)
的方程為
或![]()
聯(lián)立方程
,解方程組知方程組無(wú)解.
故直線(xiàn)
的方程為
或![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生課外使用手機(jī)的情況,某研究學(xué)習(xí)小組為研究學(xué)校學(xué)生一個(gè)月使用手機(jī)的總時(shí)間,收集了500名學(xué)生2019年12月課余使用手機(jī)的總時(shí)間(單位:小時(shí))的數(shù)據(jù).從中隨機(jī)抽取了50名學(xué)生,將數(shù)據(jù)進(jìn)行整理,得到如圖所示的頻率分布直方圖.已知這50人中,恰有2名女生的課余使用手機(jī)總時(shí)間在
區(qū)間,現(xiàn)在從課余使用手總時(shí)間在
樣本對(duì)應(yīng)的學(xué)生中隨機(jī)抽取2人,則至少抽到1名女生的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐
中,底面ABCD是梯形,且
,
,
,
,
,
,AD的中點(diǎn)為E,則四棱錐
外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P(3,
)是橢圓C:
1
上的點(diǎn),Q是P關(guān)于x軸的對(duì)稱(chēng)點(diǎn),橢圓C的離心率為
.
![]()
(1)求橢圓C的方程;
(2)A,B是橢圓上位于直線(xiàn)PQ兩側(cè)的動(dòng)點(diǎn).
①若直線(xiàn)AB的斜率為
,求四邊形APBQ面積的最大值.
②當(dāng)A、B在運(yùn)動(dòng)過(guò)程中滿(mǎn)足∠APQ=∠BPQ時(shí),問(wèn)直線(xiàn)AB的斜率是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市一社區(qū)接到有關(guān)部門(mén)的通知,對(duì)本社區(qū)居民用水量進(jìn)行調(diào)研,通過(guò)抽樣調(diào)查的方法獲得了100戶(hù)居民某年的月均用水量(單位:t),通過(guò)分組整理數(shù)據(jù),得到數(shù)據(jù)的頻率分布直方圖如圖所示:
![]()
(Ⅰ)求圖中m的值;并估計(jì)該社區(qū)居民月均用水量的中位數(shù)和平均值.(保留3位小數(shù))
(Ⅱ)用此樣本頻率估計(jì)概率,若從該社區(qū)隨機(jī)抽查3戶(hù)居民的月均用水量,問(wèn)恰有2戶(hù)超過(guò)
的概率為多少?
(Ⅲ)若按月均用水量
和
分成兩個(gè)區(qū)間用戶(hù),按分層抽樣的方法抽取10戶(hù),每戶(hù)出一人參加水價(jià)調(diào)整方案聽(tīng)證會(huì).并從這10人中隨機(jī)選取3人在會(huì)上進(jìn)行陳述發(fā)言,設(shè)來(lái)自用水量在區(qū)間
的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按
/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第 | 第 | 第 | 第 |
|
收費(fèi)比率 |
|
|
|
|
|
該公司注冊(cè)的會(huì)員中沒(méi)有消費(fèi)超過(guò)
次的,從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次數(shù) |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
假設(shè)汽車(chē)美容一次,公司成本為
元,根據(jù)所給數(shù)據(jù),解答下列問(wèn)題:
(1)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會(huì)員服務(wù)的平均利潤(rùn)為
元,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,∠ABC=∠ABD=∠CBD=90°,BC=BD=BA=1,過(guò)點(diǎn)A作平面α與BC,BD分別交于P,Q兩點(diǎn),若AB與平面α所成的角為30°,則截面APQ面積的最小值是( )
A.1B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雙11”促銷(xiāo)活動(dòng)中,某商場(chǎng)為了吸引顧客,搞好促銷(xiāo)活動(dòng),采用“雙色球”定折扣的方式促銷(xiāo),即:在紅、黃的兩個(gè)紙箱中分別裝有大小完全相同的紅、黃球各5個(gè),每種顏色的5個(gè)球上標(biāo)有1,2,3,4,5等5個(gè)數(shù)字,顧客結(jié)賬時(shí),先分別從紅、黃的兩個(gè)紙箱中各取一球,按兩個(gè)球的數(shù)字之和為折扣打折,如
,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在矩形ABCD中,AB=2,BC=1,E是CD的中點(diǎn),將三角形ADE沿AE翻折到圖②的位置,使得平面AED′⊥平面ABC.
![]()
(1)在線(xiàn)段BD'上確定點(diǎn)F,使得CF∥平面AED',并證明;
(2)求△AED'與△BCD'所在平面構(gòu)成的銳二面角的正切值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com