【題目】已知函數(shù)f(x)=|x+a|+|x+
|(a>0)(a<0)
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集
(2)證明:
.
【答案】
(1)解:當(dāng)a=2時(shí),f(x)=|x+2|+|x+
|,原不等式等價(jià)于
或
或 ![]()
解得:x<﹣
或x∈或
,所以不等式的解集為{x|x<﹣
或 ![]()
(2)解:f(m)+f(﹣
)=|m+a|+|m+
|+|﹣
+a|+|﹣
+
|
= ![]()
【解析】(1)分類討論,解不等式,即可得出結(jié)論;(2)f(m)+f(﹣
)=|m+a|+|m+
|+|﹣
+a|+|﹣
+
|,利用三角不等式,及基本不等式即可證明結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號,以及對不等式的證明的理解,了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列
滿足
,且
是
的等差中項(xiàng).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,對任意正數(shù)數(shù)
,
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線
(a>0,b>0)的左焦點(diǎn)為F1 , 左頂點(diǎn)為A,過F1作x軸的垂線交雙曲線于P、Q兩點(diǎn),過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點(diǎn)為B,若B到直線PQ的距離大于a+
,則該雙曲線的離心率取值范圍是( )
A.(1﹣
)
B.(
,+∞)
C.(1,2
)
D.(2
,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的離心率為
,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),M為橢圓上除長軸端點(diǎn)外的任意一點(diǎn),且△MF1F2的周長為4+2
.
(1)求橢圓C的方程;
(2)過點(diǎn)D(0,﹣2)作直線l與橢圓C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是定義在
上的奇函數(shù),且對任意實(shí)數(shù)
,恒有
.當(dāng)
時(shí),
.
(1)求證:
是周期函數(shù);
(2)當(dāng)
時(shí),求
的解析式;
(3)計(jì)算
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈(
,
),則sinx0的值為( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D1中,M,N分別為棱C1D1,C1C的中點(diǎn),有以下四個(gè)結(jié)論:
①直線AM與CC1是相交直線;②直線AM與BN是平行直線;
③直線BN與MB1是異面直線; ④直線MN與AC所成的角為60°.
其中正確的結(jié)論為___ (注:把你認(rèn)為正確的結(jié)論序號都填上).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
為直角梯形,
,
,
,
為
的中點(diǎn),平面
交
于
點(diǎn).、![]()
(1)求證:
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)設(shè)
,
是曲線
圖象上的兩個(gè)相異的點(diǎn),若直線
的斜率
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
有兩個(gè)極值點(diǎn)
,
,且
,若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com