如圖,F(xiàn)1,F(xiàn)2是離心率為
的橢圓C:
(a>b>0)的左、右焦點,直線
:x=-
將線段F1F2分成兩段,其長度之比為1:3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
的取值范圍.
(Ⅰ)
; (Ⅱ)[
,
).
解析試題分析:(Ⅰ)由題意比例關(guān)系先求c,再由離心率求a,從而可求橢圓的方程;(Ⅱ)分直線AB斜率是否存在兩種情況討論:(1)當(dāng)直線AB垂直于x軸時,易求;(2)當(dāng)直線AB不垂直于x軸時,先設(shè)直線AB的斜率,點M、A、B的坐標(biāo),把點A、B坐標(biāo)代入橢圓方程求k、m之間的關(guān)系,再求PQ直線方程,然后與橢圓方程聯(lián)立方程組,由韋達(dá)定理求
的表達(dá)式,最后求其范圍.
試題解析:(Ⅰ) 設(shè)F2(c,0),則
=
,所以c=1.
因為離心率e=
,所以a=
.
所以橢圓C的方程為
. 6分![]()
(Ⅱ)當(dāng)直線AB垂直于x軸時,直線AB方程為x=-
,此時P(
,0)、Q(
,0)
.
當(dāng)直線AB不垂直于x軸時,設(shè)直線AB的斜率為k,M(-
,m) (m≠0),A(x1,y1),B(x2,y2).
由
得(x1+x2)+2(y1+y2)
=0,則-1+4mk=0,故k=
.
此時,直線PQ斜率為
,PQ的直線方程為
.即
.
聯(lián)立
消去y,整理得
.
所以
,
.
于是
(x1-1)(x2-1)+y1y2![]()
![]()
![]()
.
令t=1+32m2,1<t<29,則
.
又1<t<29,所以
.
綜上,
的取值范圍為[
,
). 15分
考點:1、橢圓的方程及性質(zhì);2、直線與橢圓相交的性質(zhì);3、向量的坐標(biāo)運算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點P,且斜率為-
的直線與曲線M相交于A、B兩點. 問:△ABC能否為正三角形?若能,求點C的坐標(biāo);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E:
=1(
)過點M(2,
), N(
,1),
為坐標(biāo)原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
中,點A、B的坐標(biāo)分別為
,點C在x軸上方。
(1)若點C坐標(biāo)為
,求以A、B為焦點且經(jīng)過點C的橢圓的方程;
(2)過點P(m,0)作傾角為
的直線
交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知圓
為圓上一動點,點
是線段
的垂直平分線與直線
的交點.![]()
(1)求點
的軌跡曲線
的方程;
(2)設(shè)點
是曲線
上任意一點,寫出曲線
在點
處的切線
的方程;(不要求證明)
(3)直線
過切點
與直線
垂直,點
關(guān)于直線
的對稱點為
,證明:直線
恒過一定點,并求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的離心率為
,直線
與以原點為圓心,以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)拋物線
與橢圓
有公共焦點,設(shè)
與
軸交于點
,不同的兩點
、
在
上(
、
與
不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓
的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點,過P作兩條斜率之積為
的直線
,當(dāng)直線
都與圓
相切時,求P點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓![]()
的離心率為
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
,直線l的方程為:
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線l與橢圓
相交于
、
兩點
①若線段
中點的橫坐標(biāo)為
,求斜率
的值;
②已知點
,求證:
為定值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com