【題目】已知集合A={x|3≤
≤27},B={x|
>1}.
(1)分別求A∩B,(
)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
【答案】(1)A∩B={x|2<x≤3},(CRB)∪A={x|x≤3};(2)a的取值范圍是(﹣∞,3]
【解析】
試題分析:(1)解指數不等式我們可以求出集合A,解對數不等式,我們可以求集合B,再由集合補集的運算規則,求出CRB,進而由集合交集和并集的運算法則,即可求出A∩B,(CRB)∪A;
(2)由(1)中集合A,結合集合C={x|1<x<a},我們分C=和C≠兩種情況,分別求出對應的實數a的取值,最后綜合討論結果,即可得到答案.
解:(1)A={x|3≤3x≤27}={x|1≤x≤3}
B={x|log2x>1}={x|x>2}
A∩B={x|2<x≤3}
(CRB)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3}
(2)當a≤1時,C=
,
此時CA
當a>1時,
CA,則1<a≤3
綜上所述,a的取值范圍是(﹣∞,3]
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
+
=1(α>b>0)的右焦點到直線x﹣y+3
=0的距離為5,且橢圓的一個長軸端點與一個短軸端點間的距離為
.
(1)求橢圓C的方程;
(2)在x軸上是否存在點Q,使得過Q的直線與橢圓C交于A、B兩點,且滿足
+
為定值?若存在,請求出定值,并求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應十九大報告提出的實施鄉村振興戰略,某村莊投資
萬元建起了一座綠色農產品加工廠.經營中,第一年支出
萬元,以后每年的支出比上一年增加了
萬元,從第一年起每年農場品銷售收入為
萬元(前
年的純利潤綜合=前
年的 總收入-前
年的總支出-投資額
萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤達到最大?并求出年平均純利潤的最大值.
【答案】(1) 從第
開始盈利(2) 該廠第
年年平均純利潤達到最大,年平均純利潤最大值為
萬元
【解析】試題分析:(1)根據公式得到
,令函數值大于0解得參數范圍;(2)根據公式得到
,由均值不等式得到函數最值.
解析:
由題意可知前
年的純利潤總和
(1)由
,即
,解得
由
知,從第
開始盈利.
(2)年平均純利潤
因為
,即
所以
當且僅當
,即
時等號成立.
年平均純利潤最大值為
萬元,
故該廠第
年年平均純利潤達到最大,年平均純利潤最大值為
萬元.
【題型】解答題
【結束】
21
【題目】已知數列
的前
項和為
,并且滿足
,
.
(1)求數列
通項公式;
(2)設
為數列
的前
項和,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2+bx+c滿足f'(0)=4,f'(-2)=0。
(1)求a,b的值及曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若函數f(x)有三個不同的零點,求c的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC
>0恒成立,命題q:不等式logcosC
>0恒成立,則復合命題p∨q、p∧q、¬p中,真命題的個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定長為2的線段AB的兩個端點在以點(0,
)為焦點的拋物線x2=2py上移動,記線段AB的中點為M,求點M到x軸的最短距離,并求此時點M的坐標。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com