【題目】張先生知道清晨從甲地到乙地有好、中、差三個班次的客車.但不知道具體誰先誰后.他打算:第一輛看后一定不坐,若第二輛比第一輛舒服,則乘第二輛;否則坐第三輛.問張先生坐到好車的概率和坐到差車的概率分別是( )
A.
、 ![]()
B.
、 ![]()
C.
、 ![]()
D.
、 ![]()
【答案】C
【解析】解:設三輛車的等次為:下 中 上,它們的先后次序分下列6種情況, 下 中 上 他乘上中等車
下 上 中 他乘上上等車
中 下 上 他乘上上等車
中 上 下 他乘上上等車
上 下 中 他乘上中等車
上 中 下 他乘上下等車
他乘上上等車的情況數為:3
那么他乘上上等車的概率為
他乘上下等車的情況數為:1
那么他乘上下等車的概率為
.
故選C.
本題考查的知識點是古典概型,設三輛車的等次為:下 中 上,我們分6種情況,下 中 上 他沒乘上上等車;下 上 中 他乘上上等車;中 下 上 他乘上上等車;中 上 下 他乘上上等車;上 下 中 他沒乘上上等車;上 中 下 他沒乘上上等車;一共6種情形,然后代入古典概型公式計算,即可得到答案.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD//平面MAC,PA=PD=
,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大小;
(III)求直線MC與平面BDP所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設a>0,將函數f(x)的圖像先向右平移a個單位長度,再向下平移a2個單位長度,得到函數g(x)的圖像. (Ⅰ)若函數g(x)有兩個零點x1 , x2 , 且x1<4<x2 , 求實數a的取值范圍;
(Ⅱ)設連續函數在區間[m,n]上的值域為[λ,μ],若有
,則稱該函數為“陡峭函數”.若函數g(x)在區間[a,2a]上為“陡峭函數”,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是棱長為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中點,若H為PD上的動點,EH與平面PAD所成最大角的正切值為
. ![]()
(1)當EH與平面PAD所成角的正切值為
時,求證:EH∥平面PAB;
(2)在(1)的條件下,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一(2)班共有60名同學參加期末考試,現將其數學學科成績(均為整數)分成六個分數段[40,50),[50,60),…,[90,100],畫出如如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題: ![]()
(1)求70~80分數段的學生人數;
(2)估計這次考試中該學科的優分率(80分及以上為優分)、中位數、平均值;
(3)現根據本次考試分數分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組)為提高本班數學整體成績,決定組與組之間進行幫扶學習.若選出的兩組分數之差大于30分(以分數段為依據,不以具體學生分數為依據),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,
,
.
(1)討論函數
的單調性;
(2)記
,設
,
為函數
圖象上的兩點,且
.
(ⅰ)當
,
時,若
在
處的切線相互垂直,求證:
;
(ⅱ)若
在點
處的切線重合,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓
的左、右焦點分別為F1,F2,離心率為
,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1,過點F2作直線PF2的垂線l2.
(1)求橢圓E的標準方程;
(2)若直線l1,l2的交點Q在橢圓E上,求點P的坐標.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com