【題目】已知函數f(x)=
,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的單調區間;
(2)若n=k=1,且當x≥0時,f(x)≥1總成立,求實數m的取值范圍;
(3)若m>0,n=0,k=1,若f(x)存在兩個極值點x1、x2 , 求證:
<f(x1)+f(x2)<
.
【答案】
(1)解:m=n=k=1,f′(x)=
,
∴0<x<1,f′(x)<0,x<0或x>1時,f′(x)>0,
∴函數的單調減區間是(0,1),單調增區間是(﹣∞,0),(1,+∞);
(2)解:若n=k=1,且當x≥0時,f(x)≥1總成立,則m≥0.
m=0,f(x)=
,f′(x)=
≥0,∴f(x)min=f(0)=1;
m>0,f′(x)=
,
0<m≤
,f(x)min=f(0)=1;
m≥
,f(x)在[0,
]上為減函數,在[
,+∞)上為增函數,f(x)min<f(0)=1不成立.
綜上所述,0≤m≤
;
(3)證明:f(x)=
,f′(x)=
.
∵f(x)存在兩個極值點x1,x2,∴4m2﹣4m>0,∴m>1.
令f′(x)=0,x1+x2=2,x1x2=
,
注意到
(i=1,2),
∴f(x1)=
,f(x2)=
,
∴f(x1)+f(x2)=
=
(
)
>
=
=
;
∵
(
)<
<
,
∴
<f(x1)+f(x2)<
.
【解析】(1)若m=n=k=1,求導數,利用導數的正負,求f(x)的單調區間;(2)若n=k=1,且當x≥0時,f(x)≥1總成立,先確定m≥0,在分類討論,確定函數的最小值,即可求實數m的取值范圍;(3)令f′(x)=0,x1+x2=2,x1x2=
,再結合基本不等式,即可證明結論.
【考點精析】利用利用導數研究函數的單調性和函數的最大(小)值與導數對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】右圖是一個幾何體的平面展開圖,其中ABCD為
![]()
正方形, E、F分別為PA、PD的中點,在此幾何體中,
給出下面四個結論:
①直線BE與直線CF異面;②直線BE與直線AF異面;
③直線EF//平面PBC; ④平面BCE⊥平面PAD.
其中正確結論的個數是
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF
2CE,G是線段BF上一點,AB=AF=BC. ![]()
(Ⅰ)若EG∥平面ABC,求
的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,點O為數軸的原點,A,B,M為數軸上三點,C為線段OM上的動點.設x表示點C與原點的距離,y表示點C到點A的距離的4倍與點C到點B的距離的6倍之和.
![]()
(1)將y表示為x的函數;
(2)要使y的值不超過70,實數x應該在什么范圍內取值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春晚分會場之一是涼山西昌,電視播出后,通過網絡對涼山分會場的表演進行了調查.調查分三類人群進行,參加了網絡調查的觀眾們的看法情況如下:
觀眾對涼山分會場表演的看法 | 非常好 | 好 |
中國人且非四川(人數比例) |
|
|
四川人(非涼山)(人數比例) |
|
|
涼山人(人數比例) |
|
|
(1)從這三類人群中各選一個人,求恰好有2人認為“非常好”的概率(用比例作為相應概率);
(2)若在四川人(非涼山)群中按所持態度分層抽樣,抽取9人,在這9人中任意選取3人,認為“非常好”的人數記為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠擬生產甲、乙兩種實銷產品.已知每件甲產品的利潤為0.4萬元,每件乙產品的利潤為0.3萬元,兩種產品都需要在A,B兩種設備上加工,且加工一件甲、乙產品在A,B設備上所需工時(單位:h)分別如表所示.
甲產品所需工時 | 乙產品所需工時 | |
A設備 | 2 | 3 |
B設備 | 4 | 1 |
若A設備每月的工時限額為400h,B設備每月的工時限額為300h,則該廠每月生產甲、乙兩種產品可獲得的最大利潤為( )
A.40萬元
B.45萬元
C.50萬元
D.55萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系xOy中,雙曲線E的參數方程為
(θ為參數),設E的右焦點為F,經過第一象限的漸進線為l.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(1)求直線l的極坐標方程;
(2)設過F與l垂直的直線與y軸相交于點A,P是l上異于原點O的點,當A,O,F,P四點在同一圓上時,求這個圓的極坐標方程及點P的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和Sn滿足:Sn=nan﹣2n(n﹣1),首項
=1.
(1)求數列{an}的通項公式;
(2)設數列
的前n項和為Mn,求證:
Mn
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com