【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求證:當(dāng)
時(shí),
;
(Ⅲ)若
對(duì)任意
恒成立,求實(shí)數(shù)
的最大值.
【答案】(Ⅰ)
;(Ⅱ)見解析;(Ⅲ)1.
【解析】試題分析:
(1)對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的切線方程即可;
(2)令
,問題轉(zhuǎn)化為證明
,證得
即可.
(3)令
,討論函數(shù)
的性質(zhì)結(jié)合恒成立的性質(zhì)即可求得最終結(jié)果.
試題解析:
(Ⅰ)
,
,
又
,所以切線方程為
;
(Ⅱ)由題意知
,令
.
![]()
令
,解得
.
易知當(dāng)
時(shí),
,易知當(dāng)
時(shí),
.
即
在
單調(diào)遞減,在
單調(diào)遞增
所以
, ![]()
即
,即
.
(Ⅲ)設(shè)
,依題意,對(duì)于任意
,
恒成立.
,
時(shí),
,
在
上單調(diào)遞增,
當(dāng)
時(shí),
,滿足題意.
時(shí),隨
變化,
,
的變化情況如下表:
|
|
|
|
| — | 0 | + |
| ↘ | 極小值 | ↗ |
在
上單調(diào)遞減,所以![]()
即當(dāng)
時(shí),總存在
,不合題意.
綜上所述,實(shí)數(shù)
的最大值為1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取
名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績不低于
分者為“成績優(yōu)良”.
![]()
(1)分別計(jì)算甲、乙兩班
個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班
個(gè)樣本中,成績?cè)?/span>
分以下(不含
分)的學(xué)生中任意選取
人,求這
人來自不同班級(jí)的概率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面
列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計(jì) |
附: ![]()
獨(dú)立性檢驗(yàn)臨界值表:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
![]()
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的橢圓
的兩焦點(diǎn)分別為雙曲線
的頂點(diǎn),直線
與橢圓
交于
、
兩點(diǎn),且
,點(diǎn)
是橢圓
上異于
、
的任意一點(diǎn),直線
外的點(diǎn)
滿足
,
.
(1)求點(diǎn)
的軌跡方程;
(2)試確定點(diǎn)
的坐標(biāo),使得
的面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的
,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是
或
作品獲得一等獎(jiǎng)”;
乙說:“
作品獲得一等獎(jiǎng)”;
丙說:“
,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是
作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,惠州市某中學(xué)在此期間開展了一系列的讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”.
![]()
![]()
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書迷”的人數(shù)為
,若每次抽取的結(jié)果是相互獨(dú)立的,求
的分布列、數(shù)學(xué)期望
和方差
.
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表1所示
表1
參加社團(tuán)活動(dòng) | 不參加社團(tuán)活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 17 | 8 | 25 |
學(xué)習(xí)積極性一般 | 5 | 20 | 25 |
合計(jì) | 22 | 28 | 50 |
(1)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是多少?抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)運(yùn)用獨(dú)立檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況是否有關(guān)系?并說明理由.
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的
店,對(duì)最近100份分期付款購車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
|
|
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件
:“至多有1位采用分6期付款“的概率
;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的長軸長為
,
為坐標(biāo)原點(diǎn).
(1)求橢圓
的方程和離心率.
(2)設(shè)點(diǎn)
,動(dòng)點(diǎn)
在
軸上,動(dòng)點(diǎn)
在橢圓
上,且點(diǎn)
在
軸的右側(cè).若
,求四邊形
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com