【題目】某公司為了了解一種新產(chǎn)品的銷(xiāo)售情況,對(duì)該產(chǎn)品100天的銷(xiāo)售數(shù)量做調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下圖所示:
銷(xiāo)售數(shù)量(件) | 48 | 49 |
| 52 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 |
天數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 |
經(jīng)計(jì)算,上述樣本的平均值
,標(biāo)準(zhǔn)差
.
(Ⅰ)求表格中字母
的值;
(Ⅱ)為評(píng)判該公司的銷(xiāo)售水平,用頻率近似估計(jì)概率,從上述100天的銷(xiāo)售業(yè)績(jī)中隨機(jī)抽取1天,記當(dāng)天的銷(xiāo)售數(shù)量為
,并根據(jù)以下不等式進(jìn)行評(píng)判(
表示相應(yīng)事件的概率);
①
;②
;③
.
評(píng)判規(guī)則是:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則銷(xiāo)售水平為優(yōu)秀;僅滿(mǎn)足其中兩個(gè),則等級(jí)為良好;若僅滿(mǎn)足其中一個(gè),則等級(jí)為合格;若全部不滿(mǎn)足,則等級(jí)為不合格.試判斷該公司的銷(xiāo)售水平;
(Ⅲ)從上述100天的樣本中隨機(jī)抽取2個(gè),記樣本數(shù)據(jù)落在
內(nèi)的數(shù)量為
,求
的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ)
(Ⅱ)該公司的銷(xiāo)售水平為合格.(Ⅲ)見(jiàn)解析,![]()
【解析】
(Ⅰ)根據(jù)表中數(shù)據(jù)以及平均數(shù)的公式即可求解.
(Ⅱ)由平均值
,標(biāo)準(zhǔn)差
,結(jié)合表中數(shù)據(jù)求出
,
以及
,從而可得結(jié)論.
(Ⅲ)根據(jù)題意,
的可能取值為0,1,2,在
之間的有
天,利用組合可得
,
,
,列出分布列,進(jìn)而求出期望.
(Ⅰ)依題意,![]()
,
解得
.
(Ⅱ)由題意得
,
,
,
,
,
.
于是由表格得到,![]()
,
![]()
,
.故該公司的銷(xiāo)售水平為合格.
(Ⅲ)根據(jù)題意,
的可能取值為0,1,2,
所以
,
,
.
因此分布列是
| 0 | 1 | 2 |
|
|
|
|
故
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為
.
(1)把曲線(xiàn)
和直線(xiàn)
化為直角坐標(biāo)方程;
(2)過(guò)原點(diǎn)
引一條射線(xiàn)分別交曲線(xiàn)
和直線(xiàn)
于
,
兩點(diǎn),射線(xiàn)上另有一點(diǎn)
滿(mǎn)足
,求點(diǎn)
的軌跡方程(寫(xiě)成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)證明:當(dāng)
時(shí),函數(shù)
有唯一的極值點(diǎn);
(2)設(shè)
為正整數(shù),若不等式
在
內(nèi)恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店每年春季以每件15元的價(jià)格購(gòu)入
型號(hào)童褲若干,并開(kāi)始以每件30元的價(jià)格出售,若前2個(gè)月內(nèi)所購(gòu)進(jìn)的
型號(hào)童褲沒(méi)有售完,則服裝店對(duì)沒(méi)賣(mài)出的
型號(hào)童褲將以每件10元的價(jià)格低價(jià)處理(根據(jù)經(jīng)驗(yàn),1個(gè)月內(nèi)完全能夠把
型號(hào)童褲低價(jià)處理完畢,且處理完畢后,該季度不再購(gòu)進(jìn)
型號(hào)童褲).該服裝店統(tǒng)計(jì)了過(guò)去18年中每年該季度
型號(hào)童褲在前2個(gè)月內(nèi)的銷(xiāo)售量,制成如下表格(注:視頻率為概率).
前2月內(nèi)的銷(xiāo)售量(單位:件) | 30 | 40 | 50 |
頻數(shù)(單位:年) | 6 | 8 | 4 |
(1)若今年該季度服裝店購(gòu)進(jìn)
型號(hào)童褲40件,依據(jù)統(tǒng)計(jì)的需求量試求服裝店該季度銷(xiāo)售
型號(hào)童褲獲取利潤(rùn)
的分布列和期望;(結(jié)果保留一位小數(shù))
(2)依據(jù)統(tǒng)計(jì)的需求量求服裝店每年該季度在購(gòu)進(jìn)多少件
型號(hào)童褲時(shí)所獲得的平均利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列
的前
項(xiàng)中的最大項(xiàng)為
,最小項(xiàng)為
,設(shè)
.
(1)若
,求數(shù)列
的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和
;
(3)若數(shù)列
是等差數(shù)列,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱(chēng)為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) |
|
|
|
|
|
|
|
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期 | 潛伏期 | 總計(jì) | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計(jì) | 200 |
附:
| 0.05 | 0.025 | 0.010 |
| 3.841 | 5.024 | 6.635 |
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的右焦點(diǎn)
在圓
上,直線(xiàn)
交橢圓于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),求
的值;
(3)設(shè)點(diǎn)
關(guān)于
軸對(duì)稱(chēng)點(diǎn)為
(
與點(diǎn)
不重合),且直線(xiàn)
與
軸交于點(diǎn)
,試問(wèn)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知
為拋物線(xiàn)
上一點(diǎn),斜率分別為
,![]()
的直線(xiàn)PA,PB分別交拋物線(xiàn)于點(diǎn)A,B(不與點(diǎn)P重合).
![]()
(1)證明:直線(xiàn)AB的斜率為定值;
(2)若△ABP的內(nèi)切圓半徑為
.
(i)求△ABP的周長(zhǎng)(用k表示);
(ii)求直線(xiàn)AB的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com