【題目】某中學隨機抽取部分高一學生調(diào)查其每日自主安排學習的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖,其中自主安排學習時間的范圍是
,樣本數(shù)據(jù)分組為
,
,
,
,
.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)從學校全體高一學生中任選
名學生,這
名學生中自主安排學習時間少于
分鐘的人數(shù)記為
,求
的分布列和數(shù)學期望.(以直方圖中的頻率作為概率).
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)
,若在定義域內(nèi)存在實數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(1)已知二次函數(shù)
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(2)若
是定義在區(qū)間
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍;
(3)若
為定義域
上的“局部奇函數(shù)”,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘
米,每分鐘的用氧量為
升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘
米,每分鐘用氧量為0.2升;設潛水員在此次考古活動中的總用氧量為
升;
(1)將
表示為
的函數(shù);
(2)若
,求總用氧量
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)設
為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列
滿足
,其中A,B是兩個確定的實數(shù),![]()
(1)若
,求
的前n項和;
(2)證明:
不是等比數(shù)列;
(3)若
,數(shù)列
中除去開始的兩項外,是否還有相等的兩項,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用一個長為
,寬為
的矩形鐵皮(如圖1)制作成一個直角圓形彎管(如圖3):先在矩形的中間畫一條曲線,并沿曲線剪開,將所得的兩部分分別卷成體積相等的斜截圓柱狀(如圖2),然后將其中一個適當翻轉(zhuǎn)拼接成直角圓形彎管(如圖3)(不計拼接損耗部分),并使得直角圓形彎管的體積最大;
![]()
(1)求直角圓形彎管(圖3)的體積;
(2)求斜截面橢圓的焦距;
(3)在相應的圖1中建立適當?shù)淖鴺讼担顾嫷那的方程為
,求出方程并畫出大致圖像;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,
,四邊形ACEF為正方形,且平面
平面ACEF.
![]()
(1)證明:
;
(2)求平面BEF與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓![]()
長軸長為短軸長的兩倍,連結橢圓的四個頂點得到的菱形的面積為4,直線
過點
,且與橢圓相交于另一點
.
(1)求橢圓的方程;
(2)若線段
長為
,求直線
的傾斜角;
(3)點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、
、
按一定順序構成的數(shù)列( )
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com