【題目】如圖,在平行四邊形ABCD中,
,四邊形ACEF為正方形,且平面
平面ACEF.
![]()
(1)證明:
;
(2)求平面BEF與平面BCF所成銳二面角的余弦值.
【答案】(1)見解析 (2)
.
【解析】
(1)利用余弦定理得到
,證明
,
,
得到
平面ACEF得到答案.
(2)分別以AB,AC,AF所在直線為
軸,建立如圖所示的空間直角坐標(biāo)系,計(jì)算平面BEF的一個法向量
,平面BCF的一個法向量為
,計(jì)算夾角得到答案.
(1)在平行四邊形ABCD中,
,
在
中,由余弦定理得:
,
即
,
由
,
所以![]()
又四邊形ACEF為正方形,所以
,
又平面
平面ACEF,平面
平面ACEF=AC
所以
平面ABCD,所以
,
又
,所以
平面ACEF,
平面ACEF
所以
.
(2)由AB,AC,AF兩兩垂直,分別以AB,AC,AF所在直線為
軸,建立如圖所示的空間直角坐標(biāo)系,則![]()
設(shè)平面BEF的一個法向量
,
,
則
取![]()
同理可得平面BCF的一個法向量為![]()
設(shè)平面BEF與平面BCF所成銳二面角的平面角為
,
則
.
平面BEF與平面BCF所成銳二面角的余弦值為
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,四邊形
為菱形,
,
,E,F分別為
,
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)點(diǎn)G是線段
上一動點(diǎn),若
與平面
所成最大角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了學(xué)生的健康,對課間操活動做了如下規(guī)定:課間操時間若有霧霾則停止課間操,若無霧霾則組織課間操.預(yù)報得知,在未來一周從周一到周五的課間操時間出現(xiàn)霧霾的概率是:前3天均為
,后2天均為
,且每一天出現(xiàn)霧霾與否是相互獨(dú)立的.
(1)求未來5天至少一天停止課間操的概率;
(2)求未來5天組織課間操的天數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)隨機(jī)抽取部分高一學(xué)生調(diào)查其每日自主安排學(xué)習(xí)的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖,其中自主安排學(xué)習(xí)時間的范圍是
,樣本數(shù)據(jù)分組為
,
,
,
,
.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)從學(xué)校全體高一學(xué)生中任選
名學(xué)生,這
名學(xué)生中自主安排學(xué)習(xí)時間少于
分鐘的人數(shù)記為
,求
的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有5個命題:
①函數(shù)
的最小正周期是
;
②終邊在
軸上的角的集合是
;
③在同一坐標(biāo)系中,函數(shù)
的圖象和函數(shù)
的圖象有3個公共點(diǎn);
④把函數(shù)
的圖象向右平移
得到
的圖象;
⑤角
為第一象限角的充要條件是
.
其中,真命題的編號是______(寫出所有真命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的兩個焦點(diǎn)分別為F1,F2,離心率為
,過F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓
的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且
0,若過 A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線
相切,過定點(diǎn) M(0,2)的直線
與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線
的斜率
,在x軸上是否存在點(diǎn)P(
,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;如果不存在,請說明理由;(Ⅲ)若實(shí)數(shù)
滿足
,求
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
與雙曲線
相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若
,求實(shí)數(shù)
的值;
(2)是否存在實(shí)數(shù)
,使得
兩點(diǎn)關(guān)于
對稱?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在
島海域例行維權(quán)巡航,某時刻航行至
處,此時測得其北偏東
方向與它相距
海里的
處有一外國船只,且
島位于海監(jiān)船正東
海里處.
![]()
(1)求此時該外國船只與
島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時
海里的速度沿正南方航行.為了將該船攔截在離
島
海里的
處(
在
的正南方向),不讓其進(jìn)入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到
,速度精確到
海里/小時).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com