【題目】如圖,已知兩個城市
、
相距
,現(xiàn)計劃在兩個城市之間合建一個垃圾處理廠,立即處理廠計劃在以
為直徑的半圓弧
上選擇一點
建造(不能選在點
、
上),其對城市的影響度與所選地點到城市的距離有關(guān),對
城和
城的總影響度為
城和
城的影響度之和,記
點到
城的距離為
(單位是
),建在
處的垃圾處理廠對
城和
城的總影響度為
,統(tǒng)計調(diào)查表明:垃圾處理廠對
城的影響度與所選地點到
城的距離的平方成反比,比例系數(shù)為100,對
城的影響度與所選地點到
城的距離的平方成反比,比例系數(shù)為
,當(dāng)垃圾處理廠建在
上距離
城20公里處時,對
城和
城的總影響度為
.
![]()
(1)將
表示成
的函數(shù);
(2)求當(dāng)垃圾處理廠到
、
兩城市距離之和最大時的總影響度
的值;
(3)求垃圾處理廠對
城和
城的總影響度的最小值,并求出此時
的值.(計算結(jié)果均用精確值表示)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x-(a+1)ln x-
(a∈R),g (x)=
x2+ex-xex.
(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;
(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍;
(2)已知函數(shù)
,
,如果函數(shù)
有兩個極值點
、
,求證:
.(參考數(shù)據(jù):
,
,
,
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知橢圓
和拋物線
有公共焦點F(1,0),
的中心和
的頂點都在坐標(biāo)原點,過點M(4,0)的直線
與拋物線
分別相交于A,B兩點.
(Ⅰ)寫出拋物線
的標(biāo)準(zhǔn)方程;
(Ⅱ)若
,求直線
的方程;
(Ⅲ)若坐標(biāo)原點
關(guān)于直線
的對稱點
在拋物線
上,直線
與橢圓
有公共點,求橢圓
的長軸長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)
時的圖象,且圖象的最高點為B
賽道的中間部分為長
千米的直線跑道CD,且CD∥EF;賽道的后一部分是以
為圓心的一段圓弧DE.
![]()
(1)求
的值和∠DOE的大小;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點在半徑OD上,另外一個頂點P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時P點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 |
|
|
|
|
|
|
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達人”有多少?
(2)從這100名學(xué)生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的上下兩個焦點分別為
,過點
與
軸垂直的直線交橢圓
于
兩點,
的面積為
,橢圓
的離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知
為坐標(biāo)原點,直線
與
軸交于點
,與橢圓
交于
兩個不同的點,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
及
.
(1)分別求
、
的定義域,并求
的值;
(2)求
的最小值并說明理由;
(3)若
,
,
,是否存在滿足下列條件的正數(shù)
,使得對于任意的正數(shù)
,
、
、
都可以成為某個三角形三邊的長?若存在,則求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果
項有窮數(shù)列
滿足
,即
,那么稱有窮數(shù)列
為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列
就是“對稱數(shù)列”.
(1)設(shè)數(shù)列
是項數(shù)為7的“對稱數(shù)列”,其中
成等比數(shù)列,且
寫出數(shù)列
的每一項;
(2)設(shè)數(shù)列
是項數(shù)為
的“對稱數(shù)列”,其中
是公差為2的等差數(shù)列,且
求
取得最大值時
的取值,并求最大值;
(3)設(shè)數(shù)列
是項數(shù)為
的對稱數(shù)列”,且滿足
記
為數(shù)列
的前
項和,若
求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com