【題目】在某互聯網大會上,為了提升安全級別,將5名特警分配到3個重要路口執勤,每個人只能選擇一個路口,每個路口最少1人,最多3人,且甲和乙不能安排在同一個路口,則不同的安排方法有( )
A. 180種 B. 150種 C. 96種 D. 114種
科目:高中數學 來源: 題型:
【題目】在
中,給出如下命題:
①
是
所在平面內一定點,且滿足
,則
是
的垂心;
②
是
所在平面內一定點,動點
滿足
,
,則動點
一定過
的重心;
③
是
內一定點,且
,則
;
④若
且
,則
為等邊三角形,
其中正確的命題為_____(將所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數方程為
,(
為參數),
為曲線
上的動點,動點
滿足
(
且
),
點的軌跡為曲線
.
(1)求曲線
的方程,并說明
是什么曲線;
(2)在以坐標原點為極點,以
軸的正半軸為極軸的極坐標系中,
點的極坐標為
,射線
與
的異于極點的交點為
,已知
面積的最大值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于命題
:存在一個常數
,使得不等式
對任意正數
,
恒成立.
(1)試給出這個常數
的值;
(2)在(1)所得結論的條件下證明命題
;
(3)對于上述命題,某同學正確地猜想了命題
:“存在一個常數
,使得不等式
對任意正數
,
,
恒成立.”觀察命題
與命題
的規律,請猜想與正數
,
,
,
相關的命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}都是單調遞增數列,若將這兩個數列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數列{cn}.
(1)設數列{an},{bn}分別為等差、等比數列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設{an}的首項為1,各項為正整數,bn=3n , 若新數列{cn}是等差數列,求數列{cn} 的前n項和Sn;
(3)設bn=qn﹣1(q是不小于2的正整數),c1=b1 , 是否存在等差數列{an},使得對任意的n∈N* , 在bn與bn+1之間數列{an}的項數總是bn?若存在,請給出一個滿足題意的等差數列{an};若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一家面包房根據以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)求在未來連續3天里,有連續2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;
(2)用X表示在未來3天里日銷售量不低于100個的天數,求隨機變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
,
,點
為曲線
上任意一點且滿足![]()
(1)求曲線
的方程;
(2)設曲線
與
軸交于
兩點,點
是曲線
上異于
的任意一點,直線
分別交直線
:
于點
,試問
軸上是否存在一個定點
,使得
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究黏蟲孵化的平均溫度
(單位:
)與孵化天數
之間的關系,某課外興趣小組通過試驗得到以下6組數據:
![]()
他們分別用兩種模型①
,②
分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖:
![]()
經過計算
,
,
,
.
(1)根據殘差圖,比較模型①、②的擬合效果,應選擇哪個模型?(給出判斷即可,不必說明理由)
(2)殘差絕對值大于1的數據被認為是異常數據,需要剔除,剔除后應用最小二乘法建立
關于
的線性回歸方程.(精確到
).
參考公式:線性回歸方程
中,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com