【題目】已知
.
(1)討論
的單調(diào)性;
(2)若存在
及唯一正整數(shù)
,使得
,求
的取值范圍.
【答案】(1)
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
;(2)
的取值范圍是
.
【解析】試題分析:
(1)求出函數(shù)
的導(dǎo)函數(shù),通過對導(dǎo)函數(shù)符號的討論可得函數(shù)的單調(diào)性.(2)由題意得函數(shù)
在
上的值域為
.結(jié)合題意可將問題轉(zhuǎn)化為當(dāng)
時,滿足
的正整數(shù)解只有1個.通過討論
的單調(diào)性可得只需滿足
,由此可得所求范圍.
試題解析:
(1)由題意知函數(shù)的定義域為
.
因為
,
所以
,
令
,則
,
所以當(dāng)
時,
是增函數(shù),
又
,
故當(dāng)
時,
單調(diào)遞減,
當(dāng)
時,
單調(diào)遞增.
所以
上單調(diào)遞減,在
上單調(diào)遞增.
(2)由(1)知當(dāng)
時,
取得最小值,
又
,
所以
在
上的值域為
.
因為存在
及唯一正整數(shù)
,使得
,
所以滿足
的正整數(shù)解只有1個.
因為
,
所以
,
所以
在
上單調(diào)遞增,在
上單調(diào)遞減,
所以
,即
,
解得
.
所以實數(shù)
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記
為這兩人中觀看升旗的時刻早于7:00的人數(shù),求
的 分布列和數(shù)學(xué)期望;
(3)將表1和表2的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為
),記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為
,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為
,判斷
與
的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面
是矩形,側(cè)棱
底面
,
分別是
的中點,
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)求
與平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在一點
,使得平面
平面
?若存在,求出
的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).
(1)求他們選擇的項目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且橢圓
過點
,直線
過橢圓
的右焦點
且與橢圓
交于
兩點.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點
,求證:若圓
與直線
相切,則圓
與直線
也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中曲線
的方程是
,點
是
上的動點,點
滿足
(
為極點),點
的軌跡為曲線
,以極點
為原點,極軸為
軸的非負(fù)半軸建立平面直角坐標(biāo)系
,已知直線
的參數(shù)方程是
,(
為參數(shù)).
(Ⅰ)求曲線
直角坐標(biāo)方程與直線
的普通方程;
(Ⅱ)求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示.給出下列四個命題:
![]()
①方程f[g(x)]=0有且僅有6個根;②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有7個根;④方程g[g(x)]=0有且僅有4個根.
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
滿足
,其中
,且
,
為常數(shù).
(1)若
是等差數(shù)列,且公差
,求
的值;
(2)若
,且存在
,使得
對任意的
都成立,求
的最小值;
(3)若
,且數(shù)列
不是常數(shù)列,如果存在正整數(shù)
,使得
對任意的
均成立. 求所有滿足條件的數(shù)列
中
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,點
,圓
,以動點
為圓心的圓經(jīng)過點
,且圓
與圓
內(nèi)切.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)若直線
過點
,且與曲線
交于
兩點,則在
軸上是否存在一點
,使得
軸平分
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com