【題目】如圖,在三棱柱
中,
為
的中點(diǎn),
,
.
![]()
(1)求證:
平面
;
(2)當(dāng)
時(shí),求直線
與平面
所成角的正弦值.
【答案】(1)見解析;(2)
.
【解析】【試題分析】(1)依據(jù)題設(shè)條件運(yùn)用直線與平面平行的判定定理進(jìn)行分析推證;(2)依據(jù)題設(shè)條件建立空間直角坐標(biāo)系,借助向量的有關(guān)知識與數(shù)量積公式分析求解:
(1)證明:
![]()
連結(jié)
與
相交于點(diǎn)
,連結(jié)
.
∵
為中點(diǎn),∴
,
又∵
平面
平面
,
∴
平面
.
(2)∵
,
∴
,∴
,
又∵
平面
平面
,
∴
平面
,
∴平面
平面
.
![]()
如圖,過
在平面
內(nèi)作
,垂足為
.
∵平面
平面
,平面
平面
,
∴
平面
.
以點(diǎn)
為原點(diǎn),
的方向分別為
軸、
軸、
軸正方向,建立空間直角坐標(biāo)系,得下列坐標(biāo):
.
設(shè)平面
的一個(gè)法向量
,則
,∴
,解之得
.
∴
.
又∵
.∴
,
所以直線
與平面
所成角的正弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知ABCD為矩形,AB=3,BC=2,在矩形ABCD內(nèi)隨機(jī)取一點(diǎn)P,點(diǎn)P到矩形四個(gè)頂點(diǎn)的距離都大于1的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asin(2ωx+
)+
+b(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是
,最小值是
.
(1)求ω、a、b的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點(diǎn)
,曲線
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為
軸正半軸建立直角坐標(biāo)系.
(1)在直角坐標(biāo)系中,求點(diǎn)
的直角坐標(biāo)及曲線
的參數(shù)方程;
(2)設(shè)點(diǎn)
為曲線
上的動點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)函數(shù)
的圖象能否與
軸相切?若能與
軸相切,求實(shí)數(shù)
的值;否則,請說明理由;
(2)若函數(shù)
在
上單調(diào)遞增,求實(shí)數(shù)
能取到的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動點(diǎn)
在直線
上,動點(diǎn)
在直線
上,設(shè)線段
的中點(diǎn)為
,且
,則
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1,
,D為AC上的點(diǎn),B1C∥平面A1BD;
(1)求證:BD⊥平面
;
(2)若
且
,求三棱錐A-BCB1的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要想得到函數(shù)y=sin(x﹣
)的圖象,只須將y=cosx的圖象( )
A.向右平移
個(gè)單位
B.向右平移
個(gè)單位
C.向左平移
個(gè)單位
D.向左平移
個(gè)單位
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com