【題目】設(shè)函數(shù)
.
(1)當(dāng)b=0時(shí),求函數(shù)
的極小值;
(2)若已知b>1且函數(shù)
與直線y=-x相切,求b的值;
(3)在(2)的條件下,函數(shù)
與直線y=-x+m有三個(gè)公共點(diǎn),求m的取值范圍.(直接寫出答案)
【答案】(1)
(2)b=3(3)![]()
【解析】
(1)求導(dǎo)得到函數(shù)的單調(diào)區(qū)間,再計(jì)算極小值.
(2)設(shè)切點(diǎn)是(
),求導(dǎo),根據(jù)條件得到
計(jì)算得到答案.
(3)化簡(jiǎn)得到
,設(shè)
,畫出函數(shù)圖象得到答案.
(1)當(dāng)b=0時(shí),
則
,由
得
,
當(dāng)
或
時(shí),
;當(dāng)
時(shí),
,
則當(dāng)
時(shí),f(x)取得極小值![]()
(2)因
,則![]()
設(shè)函數(shù)
與直線y=-x相切的切點(diǎn)是(
),
因?yàn)?/span>
,所以
,
所以有![]()
又
,相減得
,
所以
,所以
,解得b=3.
(3)![]()
設(shè)
,![]()
在
上單調(diào)遞增;在
單調(diào)遞減.
極大值
,極小值
,畫出函數(shù)圖象:
![]()
根據(jù)圖象得到答案:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海途安型號(hào)出租車價(jià)格規(guī)定:起步費(fèi)
元,可行
千米;
千米以后按每千米按
元計(jì)價(jià),可再行
千米;以后每千米都按
元計(jì)價(jià)。假如忽略因交通擁擠而等待的時(shí)間.
請(qǐng)建立車費(fèi)
(元)和行車?yán)锍?/span>
(千米)之間的函數(shù)關(guān)系式;
注意到上海出租車的計(jì)價(jià)系統(tǒng)是以元為單位計(jì)價(jià)的,如:小明乘坐途安型號(hào)出租車從華師大二附中本部到浦東實(shí)驗(yàn)學(xué)校走路線一(路線一總長(zhǎng)
千米)須付車費(fèi)
元,走路線二(路線二總長(zhǎng)
千米)也須付車費(fèi)
元.將上述函數(shù)解析式進(jìn)行修正(符號(hào)
表示不大于
的最大整數(shù),符號(hào)
表示不小于
的最小整數(shù));并求小明乘坐途安型號(hào)出租車從華師大二附中本部到閔行分校須付車費(fèi)多少元?(注:兩校區(qū)路線長(zhǎng)
千米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)為
、
.
(1)求以
為焦點(diǎn),原點(diǎn)為頂點(diǎn)的拋物線方程;
(2)若橢圓
上點(diǎn)
滿足
,求
的縱坐標(biāo)
;
(3)設(shè)
,若橢圓
上存在兩個(gè)不同點(diǎn)
、
滿足
,證明:直線
過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
的圖象的頂點(diǎn)坐標(biāo)為
,且過坐標(biāo)原點(diǎn)
.數(shù)列
的前
項(xiàng)和為
,點(diǎn)
在二次函數(shù)
的圖象上.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,數(shù)列
的前
項(xiàng)和為
,若
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)在數(shù)列
中是否存在這樣一些項(xiàng):![]()
![]()
,這些項(xiàng)都能夠構(gòu)成以
為首項(xiàng),
為公比的等比數(shù)列
?若存在,寫出
關(guān)于
的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為提高生產(chǎn)質(zhì)量,引入了一批新的生產(chǎn)設(shè)備,為了解生產(chǎn)情況,隨機(jī)抽取了新、舊設(shè)備生產(chǎn)的共200件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),統(tǒng)計(jì)得到產(chǎn)品的質(zhì)量指標(biāo)值如下表及圖(所有產(chǎn)品質(zhì)量指標(biāo)值均位于區(qū)間
內(nèi)),若質(zhì)量指標(biāo)值大于30,則說明該產(chǎn)品質(zhì)量高,否則說明該產(chǎn)品質(zhì)量一般.
質(zhì)量指標(biāo) | 頻數(shù) |
| 2 |
| 8 |
| 10 |
| 30 |
| 20 |
| 10 |
合計(jì) | 80 |
![]()
(1)根據(jù)上述圖表完成下列
列聯(lián)表,并判斷是否有
的把握認(rèn)為產(chǎn)品質(zhì)量高與引人新設(shè)備有關(guān);
新舊設(shè)備產(chǎn)品質(zhì)量
列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
新設(shè)備產(chǎn)品 | |||
舊設(shè)備產(chǎn)品 | |||
合計(jì) |
(2)從舊設(shè)備生產(chǎn)的質(zhì)量指標(biāo)值位于區(qū)間
的產(chǎn)品中,按分層抽樣抽取6件產(chǎn)品,再?gòu)倪@6件產(chǎn)品中隨機(jī)選取2件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),求至少有一件產(chǎn)品質(zhì)量指標(biāo)值位于
的概率.
附:
,
.
| 0.10 | 0.05 | 0.01 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】舉行動(dòng)物運(yùn)動(dòng)會(huì)其中有小兔大兔接力賽跑一項(xiàng),跑道從起點(diǎn)
經(jīng)過點(diǎn)
再到終點(diǎn)
,其中
米,
米,規(guī)定小兔跑第一棒從
到
,大兔在
處接力完成跑第二棒從
到
,假定接力賽跑時(shí)小兔大兔的各自速度都是均勻的,且它們的速度之和為定值10米/秒,試問小兔和大兔應(yīng)以怎樣的速度接力賽跑,才能使接力賽成績(jī)最好(所需時(shí)間最短),并求其最短時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若關(guān)于x的方程
有解,求實(shí)數(shù)a的最小整數(shù)值;
(2)若對(duì)任意的
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
是自然對(duì)數(shù)的底數(shù))
(1)求證: ![]()
(2)若不等式
在
上恒成立,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)者計(jì)劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向此創(chuàng)業(yè)者對(duì)該景區(qū)附近五家“農(nóng)家樂”跟蹤調(diào)查了100天,這五家“農(nóng)家樂的收費(fèi)標(biāo)準(zhǔn)互不相同得到的統(tǒng)計(jì)數(shù)據(jù)如下表,x為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),t為入住天數(shù)(單位:天),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)x與“入住率”y的散點(diǎn)圖如圖
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
![]()
(1)若從以上五家“農(nóng)家樂”中隨機(jī)抽取兩家深人調(diào)查,記
為“入住率超過0.6的農(nóng)家樂的個(gè)數(shù),求
的概率分布列
(2)z=lnx,由散點(diǎn)圖判斷
與
哪個(gè)更合適于此模型(給出判斷即可不必說明理由)?并根據(jù)你的判斷結(jié)果求回歸方程(a,
的結(jié)果精確到0.1)
(3)根據(jù)第(2)問所求的回歸方程,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),100天銷售額L最大?(100天銷售額L=100×入住率×收費(fèi)標(biāo)準(zhǔn)x)
參考數(shù)據(jù)
,
,
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com