已知橢圓C:
+
=1(a>b>0).
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過(guò)原點(diǎn)O任意作兩條互相垂直的直線與橢圓
+
=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.![]()
(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過(guò)點(diǎn)(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)已知O為原點(diǎn),求證:∠MON為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L(zhǎng),設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點(diǎn)M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過(guò)點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
.若存在,請(qǐng)求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過(guò)P作PM⊥x軸于M,N為PM上一點(diǎn),且
.
(1)求點(diǎn)N的軌跡C的方程;
(2)若A(2,1),B(3,0),過(guò)B的直線與曲線C相交于D、E兩點(diǎn),則
是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
的三個(gè)頂點(diǎn)都在拋物線
上,且拋物線的焦點(diǎn)
滿足
,若
邊上的中線所在直線
的方程為
(
為常數(shù)且
).
(1)求
的值;
(2)
為拋物線的頂點(diǎn),
,
,
的面積分別記為
,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是![]()
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄A
過(guò)定點(diǎn)(1,0),且與直線
相切.
(1)求動(dòng)圓圓心
的軌跡方程;
(2)設(shè)
是軌跡
上異于原點(diǎn)
的兩個(gè)不同點(diǎn),直線
和
的傾斜角分別為
和
,①當(dāng)
時(shí),求證直線
恒過(guò)一定點(diǎn)
;
②若
為定值
,直線
是否仍恒過(guò)一定點(diǎn),若存在,試求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題
:方程
表示的曲線是焦點(diǎn)在y軸上的雙曲線,命題
:方程
無(wú)實(shí)根,若
∨
為真,
為真,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com