【題目】去年年底,某商業集團公司根據相關評分細則,對其所屬25家商業連鎖店進行了考核評估.將各連鎖店的評估分數按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標準如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
![]()
(1)估計該商業集團各連鎖店評估得分的眾數和平均數;
(2)從評估分數不小于80分的連鎖店中任選2家介紹營銷經驗,求至少選一家A等級的概率.
【答案】(1)眾數是
,平均數是
;(2)
.
【解析】
(1)由最高小矩形的底邊中點估計眾數,利用中位數將小矩形面積分為左右兩側均為0.5求解中位數即可;
(2)列出所有可能的事件,然后找到滿足題意的事件的個數,最后利用古典概型計算公式求解概率值即可.
(1)最高小矩形的底邊中點為75,估計得分的眾數為75分。
直方圖中從左至第一、三、四個小矩形的面積分別為0.28,0.16,0.08,則第二個小矩形的面積為
1-0.28-0.16-0.08=0.48.
所以
,
故估計該商業集團各連鎖店評估得分的平均數為75.4.
(2)
等級的頻數為
,記這兩家分別為
等級的頻數為
,記這四家分別為
,從這6家連鎖店中任選2家,共有![]()
,共有15種選法.
其中至少選1家
等級的選法有
共9種,則
,
故至少選一家
等級的概率為
.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,且底面ABCD為正方形,PD=DC=2,E,F,G分別是AB,PB,CD的中點.
![]()
(1)求證:EF⊥DC;
(2)求證:GF∥平面PAD;
(3)求點G到平面PAB的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種設備的單價為
元,設備維修和消耗費用第一年為
元,以后每年增加
元(
是常數).用
表示設備使用的年數,記設備年平均費用為
,即
(設備單價
設備維修和消耗費用)
設備使用的年數.
(Ⅰ)求
關于
的函數關系式;
(Ⅱ)當
,
時,求這種設備的最佳更新年限.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列
中,
在直線
.
(1)求數列{an}的通項公式;
(2)令
,數列
的前n項和為
.
(ⅰ)求
;
(ⅱ)是否存在整數λ
,使得不等式(-1)nλ<
(n∈N
)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記Sn為等比數列{an}的前n項和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通項公式;
(2)求Sn , 并判斷Sn+1 , Sn , Sn+2是否能成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B為曲線C:y=
上兩點,A與B的橫坐標之和為4.(12分)
(1)求直線AB的斜率;
(2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當直線
斜率為0時,
.
![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2
,求△ABC的面積S.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com