【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
.(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
【答案】
(1)
解:由三角形的面積公式可得S△ABC=
acsinB=
,
∴3csinBsinA=2a,
由正弦定理可得3sinCsinBsinA=2sinA,
∵sinA≠0,
∴sinBsinC=
;
(2)
解:∵6cosBcosC=1,
∴cosBcosC=
,
∴cosBcosC﹣sinBsinC=
﹣
=﹣
,
∴cos(B+C)=﹣
,
∴cosA=
,
∵0<A<π,
∴A=
,
∵
=
=
=2R=
=2
,
∴sinBsinC=
=
=
=
,
∴bc=8,
∵a2=b2+c2﹣2bccosA,
∴b2+c2﹣bc=9,
∴(b+c)2=9+3cb=9+24=33,
∴b+c= ![]()
∴周長a+b+c=3+
.
【解析】(1.)根據三角形面積公式和正弦定理可得答案,
(2.)根據兩角余弦公式可得cosA=
,即可求出A=
,再根據正弦定理可得bc=8,根據余弦定理即可求出b+c,問題得以解決.
【考點精析】解答此題的關鍵在于理解兩角和與差的余弦公式的相關知識,掌握兩角和與差的余弦公式:
,以及對正弦定理的定義的理解,了解正弦定理:
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,點
,直線
,設圓
的半徑為1, 圓心在
上.
![]()
(1)若圓心
也在直線
上,過點
作圓
的切線,求切線方程;
(2)若圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了監控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態下生產的零件的尺寸服從正態分布N(μ,σ2).(12分)
(1)假設生產狀態正常,記X表示一天內抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數,求P(X≥1)及X的數學期望;
(2)一天內抽檢零件中,如果出現了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
(ⅰ)試說明上述監控生產過程方法的合理性;
(ⅱ)下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得
=
=9.97,s=
=
≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數
作為μ的估計值
,用樣本標準差s作為σ的估計值
,利用估計值判斷是否需對當天的生產過程進行檢查?剔除(
﹣3
+3
)之外的數據,用剩下的數據估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,
≈0.09.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列
中,
在直線
.
(1)求數列{an}的通項公式;
(2)令
,數列
的前n項和為
.
(ⅰ)求
;
(ⅱ)是否存在整數λ
,使得不等式(-1)nλ<
(n∈N
)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B是橢圓C:
+
=1長軸的兩個端點,若C上存在點M滿足∠AMB=120°,則m的取值范圍是( )
A.(0,1]∪[9,+∞)
B.(0,
]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0,
]∪[4,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學家歐拉在1765年發現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知
的頂點
,若其歐拉線的方程為
,則頂點
的坐標為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com