【題目】在平面直角坐標系xOy中,已知橢圓C:
的離心率
,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.
【答案】
(1)解:由
得a2=3b2,橢圓方程為x2+3y2=3b2
橢圓上的點到點Q的距離
= ![]()
①當﹣b≤﹣1時,即b≥1,
得b=1
②當﹣b>﹣1時,即b<1,
得b=1(舍)
∴b=1
∴橢圓方程為 ![]()
(2)解:假設M(m,n)存在,則有m2+n2>1
∵|AB|=
,點O到直線l距離 ![]()
∴
= ![]()
∵m2+n2>1
∴0<
<1,∴ ![]()
當且僅當
,即m2+n2=2>1時,S△AOB取最大值
,
又∵ ![]()
解得: ![]()
所以點M的坐標為
或
或
或
,△AOB的面積為
.
【解析】(1)由
得a2=3b2 , 橢圓方程為x2+3y2=3b2 , 求出橢圓上的點到點Q的距離,利用配方法,確定函數的最大值,即可求得橢圓方程;(2)假設M(m,n)存在,則有m2+n2>1,求出|AB|,點O到直線l距離,表示出面積,利用基本不等式,即可確定三角形面積的最大值,從而可求點M的坐標.
【考點精析】關于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:
,焦點在y軸:
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】戶外運動已經成為一種時尚運動,某單位為了了解員工喜歡戶外運動是否與性別有關,對本單位的50名員工進行了問卷調查,得到了如下列聯表:
喜歡戶外運動 | 不喜歡戶外運動 | 合計 | |
男性 | 5 | ||
女性 | 10 | ||
合計 | 50 |
已知在這50人中隨機抽取1人抽到喜歡戶外運動的員工的概率是
.
(1)請將上面的列聯表補充完整;
(2)是否有99.5%的把握認為喜歡戶外運動與性別有關?并說明你的理由;
(3)經進一步調查發現,在喜歡戶外運動的10名女性員工中,有4人還喜歡瑜伽.若從喜歡戶外運動的10位女性員工中任選3人,記ξ表示抽到喜歡瑜伽的人數,求ξ的分布列和數學期望.
下面的臨界值表僅供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(x﹣a)ex+(a﹣1)x+a,a∈R.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設g(x)=f′(x),證明:當a>2時,函數g(x)在(0,+∞)上僅有一個零點;
(3)若對任意的x∈[0,2],恒有f(x)≤0成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,c=
asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為
,求b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.
組號 | 分組 | 頻數 | 頻率 |
1 |
| 5 | 0.05 |
2 |
| 35 | 0.35 |
3 |
|
|
|
4 |
|
|
|
5 |
| 10 | 0.1 |
(1)求
的值.
2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?
(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,直線
的參數方程為
(
為參數),在極坐標(與直角坐標系
取相同的長度單位,且以原點
為極點,
軸正半軸為極軸)中,圓
的方程為![]()
(1)求圓
的直角坐標方程;
(2)設圓
與直線
交于點
,
,若點
的坐標為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.![]()
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com