【題目】已知正項等差數列
的前
項和為
,若
,且
成等比數列.
(1)求
的通項公式;
(2)設
,記數列
的前
項和為
,求![]()
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:
的離心率
,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.![]()
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶
元,售價每瓶
元,未售出的酸奶降價處理,以每瓶
元的價格當天全部處理完。據往年銷售經驗,每天需求量與當天最高氣溫(單位:
)有關,如果最高氣溫不低于
,需求量為
瓶;如果最高氣溫位于區間
,需求量為
瓶;如果最高氣溫低于
,需求量為
瓶,為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 |
|
|
|
|
|
|
天數 |
|
|
|
|
|
|
以最高氣溫位于各區間的頻率代替最高氣溫位于該區間的概率.
(1)求六月份這種酸奶一天的需求量不超過
瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為
(單位:元),若該超市在六月份每天的進貨量均為
瓶,寫出
的所有可能值,并估計
大于零的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)(12分)設f(x)=2x3+ax2+bx+1的導數為f′(x),若函數y=f′(x)的圖象關于直線x=﹣
對稱,且f′(1)=0
(Ⅰ)求實數a,b的值
(Ⅱ)求函數f(x)的極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若命題p:函數y=x2﹣2x的單調遞增區間是[1,+∞),命題q:函數y=x﹣
的單調遞增區間是[1,+∞),則( )
A.p∧q是真命題
B.p∨q是假命題
C.非p是真命題
D.非q是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
![]()
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以說明;
(Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
附注:
參考數據:
,
,
,
≈2.646.
參考公式:相關系數
回歸方程
中斜率和截距的最小二乘估計公式分別為:
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com