【題目】在△ABC中,
,O為平面內(nèi)一點,且
,M為劣弧
上一動點,且
,
則p+q的最大值為 .
【答案】2
【解析】解:∵
,
![]()
∴O是△ABC的外心.
∵∠A=
,∴∠BOC=
,
設(shè)OA=1,A(1,0),B(﹣1,0),C(
,
),
則
=p
=(﹣p+
,
),
設(shè)M(cosα,sinα),則
≤α≤π,
∴
,即
,
∴p+q=
sinα﹣cosα=2sin(α﹣
),
∵
≤α≤π,∴
≤
≤
,
∴當
=
時,p+q取得最大值2.
故答案為:2.
本題考查的是由向量解決幾何問題,由數(shù)形結(jié)合法可得O是△ABC的外心.設(shè)OA=1,A(1,0),B(﹣1,0),C(
,
).設(shè)M(cosα,sinα),則
≤α≤π,∴p+q= 3 sinα﹣cosα=2sin(α﹣
),∵
≤α≤π,∴
≤ α
≤
. ∴當 α
=
時,p+q取得最大值2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點M(﹣1,0)和N(1,0),若某直線上存在點P,使得|PM|+|PN|=4,則稱該直線為“橢型直線”.現(xiàn)有下列直線:①x﹣2y+6=0;②x﹣y=0;③2x﹣y+1=0;④x+y﹣3=0.其中是“橢型直線”的是( )
A.①③
B.①②
C.②③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=2ln(x﹣2)﹣a(x﹣2)2
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個相異零點x1 , x2 , 求證x1x2+4>2(x1+x2)+e(其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,且f(2017)=2016,則f(﹣2017)=( )
A.﹣2014
B.﹣2015
C.﹣2016
D.﹣2017
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數(shù)方程為
,(t為參數(shù),0<θ<π),曲線C的極坐標方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex﹣
x2 , 其中a∈R,e為自然對數(shù)的底數(shù)
(Ⅰ)函數(shù)f(x)的圖象能否與x軸相切?若能與x軸相切,求實數(shù)a的值;否則,請說明理由;
(Ⅱ)若函數(shù)y=f(x)+2x在R上單調(diào)遞增,求實數(shù)a能取到的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=
. (a>0且a≠1),函數(shù)g(x)=f(x)﹣k.
①若a=
,函數(shù)g(x)無零點,則實數(shù)k的取值范圍為;
②若f(x)有最小值,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點,C(0,2a),給出下列4個命題:
p1:△ABC的重心在定直線7x﹣3y=0上,p2:|AB|
的最大值為2
;
p3:△ABC的重心在定直線 3x﹣7y=0上;p4:|AB|
的最大值為2
.
其中的真命題為( )
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com