【題目】已知函數(shù)
,
.
(1)若
在
處取得極值,求
的值;
(2)設(shè)
,試討論函數(shù)
的單調(diào)性;
(3)當
時,若存在正實數(shù)
滿足
,求證:
.
【答案】(1)
.(2)見解析(3)見解析
【解析】
(Ⅰ)由題意,求得函數(shù)的導(dǎo)數(shù)
,根據(jù)
,即可求解;
(Ⅱ)由題意,得
,求得函數(shù)的導(dǎo)數(shù)
,分類討論,即可求解函數(shù)的單調(diào)區(qū)間;
(Ⅲ)代入
,求出
,令
,
,根據(jù)函數(shù)的單調(diào)性,即可作出證明.
(1)因為
,所以
,
因為
在
處取得極值,
所以
,解得
.
驗證:當
時,
在
處取得極大值.
(2)解:因為
所以
.
①若
,則當
時,
,所以函數(shù)
在
上單調(diào)遞增;
當
時,
,
函數(shù)
在
上單調(diào)遞減.
②若
,
,
當
時,易得函數(shù)
在
和
上單調(diào)遞增,
在
上單調(diào)遞減;
當
時,
恒成立,所以函數(shù)
在
上單調(diào)遞增;
當
時,易得函數(shù)
在
和
上單調(diào)遞增,
在
上單調(diào)遞減.
(3)證明:當
時,
,
因為
,
所以
,
即
,
所以
.
令
,
,
則
,
當
時,
,所以函數(shù)
在
上單調(diào)遞減;
當
時,
,所以函數(shù)
在
上單調(diào)遞增.
所以函數(shù)
在
時,取得最小值,最小值為
.
所以
,
即
,所以
或
.
因為
為正實數(shù),所以
.
當
時,
,此時不存在
滿足條件,
所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:
與直線
相切.
(1)求圓O的方程;
(2)若過點
的直線l被圓O所截得的弦長為4,求直線l的方程;
(3)若過點
作兩條斜率分別為
,
的直線交圓O于B、C兩點,且
,求證:直線BC恒過定點.并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
5 | 6 | 8 | ||||||||
6 | 2 | 3 | 3 | 5 | 6 | 8 | 9 | |||
7 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | ||||||||||
9 | 5 | 8 |
![]()
(1)求該班數(shù)學(xué)成績在
的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;
(3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項等差數(shù)列
的前n項和為
,已知
且
成等比數(shù)列
(1)求數(shù)列
的通項公式;
(2)若
,求數(shù)列
的前n項和;
(3)設(shè)數(shù)列
滿足
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當
時,求函數(shù)
在
上的最值;
(2)若函數(shù)
在
上單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:
(a>b>0)的離心率為
,F(xiàn)為橢圓C的右焦點.A(-a,0),|AF|=3.
![]()
(I)求橢圓C的方程;
(II)設(shè)O為原點,P為橢圓上一點,AP的中點為M.直線OM與直線x=4交于點D,過O且平行于AP的直線與直線x=4交于點E.求證:∠ODF=∠OEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.
(1)求
的值;
(2)證明:對任意的n∈N*,等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)解答一道解析幾何題:“已知直線l:
與x軸的交點為A,圓O:
經(jīng)過點A.
(Ⅰ)求r的值;
(Ⅱ)若點B為圓O上一點,且直線AB垂直于直線l,求
.”
該同學(xué)解答過程如下:
解答:(Ⅰ)令
,即
,解得
,所以點A的坐標為
.
因為圓O:
經(jīng)過點A,所以
.
(Ⅱ)因為
.所以直線AB的斜率為
.
所以直線AB的方程為
,即
.
代入
消去y整理得
,
解得
,
.當
時,
.所以點B的坐標為
.
所以
.
指出上述解答過程中的錯誤之處,并寫出正確的解答過程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com