【題目】如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分別是A1C1,BC的中點.
![]()
(1)求證:AB⊥平面B1BCC1; 平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
【答案】(1)詳見解析(2)詳見解析(3) ![]()
【解析】
試題分析:(1)由
,
可證明AB⊥B1BCC1,進而由面面垂直的判定定理可得平面ABE⊥平面B1BCC1;(2)證明C1F∥平面ABE,只需證明四邊形FGEC1為平行四邊形,可得C1F∥EG;(3)利用VE-ABC=
S△ABCAA1,可求三棱錐E-ABC的體積
試題解析:(1)因為在三棱柱
中,
底面
,所以
,又因為
,所以
平面
,所以平面
平面
。 ......4分
(2)取
的中點
,連接![]()
因為
分別是
、
、
的中點,所以
,且
,
。因為
且
,所以
且
,所以四邊形
為平行四邊形,所以
。又因為
在平面
上,且
不在平面
上,所以
平面
。 ......8分
(3)因為
,
,
,所以
,所以三棱錐
的體積
。 ......12分
科目:高中數學 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
![]()
(1)已知中間三個年齡段的網上購票人數成等差數列,求
的值;
(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:
年齡在
歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為
,
.求:
(1)tan(α+β)的值;
(2)α+2β的大。
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環數如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環數的平均數和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x+y)=f(x)+f(y),當x>0時,有
,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數f(x)的單調性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com