【題目】關(guān)于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( )
①利用殘差進(jìn)行回歸分析時,若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說明線性回歸模型的擬合精度較高;
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,期望與方差均沒有變化;
③調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法;
④已知隨機(jī)變量
服從正態(tài)分布
,且
,則
.
A.1B.2C.3D.4
【答案】B
【解析】
①④說法正確,將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,期望發(fā)生改變,調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查,沒有明顯層次,不是分層抽樣法;
根據(jù)利用殘差進(jìn)行回歸分析可得①說法正確;
將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,方差均沒有變化,期望發(fā)生改變,所以②說法錯誤;
調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查,沒有明顯層次,不是分層抽樣法,所以③錯誤;
已知隨機(jī)變量
服從正態(tài)分布
,且
,根據(jù)正態(tài)分布密度曲線特征則
,所以④正確.
故選:B
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,已知定點(diǎn)
、
,動點(diǎn)
滿足
,設(shè)點(diǎn)
的曲線為
,直線
與
交于
兩點(diǎn).![]()
(1)寫出曲線
的方程,并指出曲線
的軌跡;
(2)當(dāng)
,求實數(shù)
的取值范圍;
(3)證明:存在直線
,滿足
,并求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對其等級系數(shù)進(jìn)行統(tǒng)計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數(shù)為4的3件日用品記為
,等級系數(shù)為5的2件日用品記為
,現(xiàn)從
,
這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數(shù)恰好相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線
的普通方程和極坐標(biāo)方程;
(2)設(shè)直線
與曲線
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=
,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(t為參數(shù)),在以O為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為![]()
(Ⅰ)求直線
的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線
與
軸的交點(diǎn)為P,直線
與曲線C的交點(diǎn)為A,B,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線C交于不同的兩點(diǎn)A,B,
的最小值為4.
(1)求拋物線C的方程;
(2)已知P,Q是拋物線C上不同的兩點(diǎn),若直線
恰好垂直平分線段PQ,求實數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在點(diǎn)
處的切線方程為
,求
的值;
(2)若
的導(dǎo)函數(shù)
存在兩個不相等的零點(diǎn),求實數(shù)
的取值范圍;
(3)當(dāng)
時,是否存在整數(shù)
,使得關(guān)于
的不等式
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的左、右焦點(diǎn)分別是
,
,點(diǎn)
為
的上頂點(diǎn),點(diǎn)
在
上,
,且
.
(1)求
的方程;
(2)已知過原點(diǎn)的直線
與橢圓
交于
,
兩點(diǎn),垂直于
的直線
過
且與橢圓
交于
,
兩點(diǎn),若
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com